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this knowledge has formed me in another way as well, for it has taught me the profound
truth of the ancient adage, that even though knowledge is power, WISDOM 1§ FREEDOM.
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SUMMARY Water, Feves-¢h and

Training v« ectre

Rivers are a dynamic and increasingly important part of our physical environment.
Their behaviour is of interest in a wide variety of contexis, ranging from disaster
prevention, such as by flood control, o water resources development for navigation and
recreation. Al the present moment certain additional man-made effect of previous river-
training works, such as the straightening of meandering channels, are also involved. For
these reasons, studies of river morphology and associated river plan-form movements are
urgently needed. Indeed today many scientists and engineers are aware of this and are
actively working on it from various directions. We may mention here the geographers,
geologists, geo-morphologists and hydraulic engineers who are attracted to such studies.
The last of these has a handy tool, which is composed of computational methods and
mathematical models. The present study is one of this kind. Although it is not possible to
tackle the river plan-form movement study in a completely holistic way, the present study
is based firmly upon mathematical modelling as a core, even as it tnes to consider the
possibilities of obtaining assistance from the neighbouring sciences mentioned above.

In order to study the river plan-form movement, the first step in this study is that
of developing an own mathematical model. First of all straight rivers are seldom, and
indeed rivers flow nearly always have sinuous plan-forms, so that the *natural’ co-ordinate
systems of their models are curvilinear co-ordinate systems. Since the river evolution and
its movement cannot be studied with a purely one-dimensional approach, the model must
be at least two dimensional. Moreover the complex system of secondary flow which is
provided by the flow circulation across the river, in a direction perpendicular to the
longitudinal direction of flow, is so important in the channel bends that the vertical profile
of this velocity has to be studied and introduced in such a way that its effect is included
in the model. By this means the model becomes in effect even more than two dimensional.
These studies are presented in chapter 3. The model is developed, tested and verified with
flume experiments and also with two well-documented natural river situations, these being
the river Waal in the Netherlands and the niver Ishikar in Hokkaido, Japan. The results
are presented also in chapter 3.

After this foundational work, the present study continues to consider the stability
of rivers, as described in chapter 4. The river stability problem is an elusive problem.
This problem is influenced by the strength of the flow and the resistance of the container
which is the river bed and banks. Up to this point it is very clear that the river will be the
more stable as the flow is weaker or the resistance of the ground to erosion is stronger.
Unfortunately, the problem involves much more than that, and its complexity is described
in chapter 4. The many interrelated effects of the flow and sediment transport in the first
place and the bed topography of the river and flow in the second place are shown to lead
to temporal changes of bed forms in the river bed and meso-scale bed features such as
bars and pools along the river reach, all of which add their own complexity. This problem
is studied and eventually a maximum (sediment) transport capacity (MTC) channel width
is chosen as a deciding criterion for straight-channel stability. A rather detailed explanation
of the MTC channel width concept is provided in chapter 4. At this point the present study

15



necessitated that a test be made to verify whether an MTC channel widl_h c:uu}d exist for
a meandering channel. Also the present study was concerned with preparnng this lﬁit_ﬂf@
developing a bed topography model for meandering rivers. Therefore the model which iy
developed in chapter 3 is used to test for the existence of an MTC channel width in
meandering rivers. The conclusion made from this test is that the concept of an MTC
channel width can also be introduced in meandering rivers. During the process of
investigating the MTC channel width in meandering rivers, however, some rather difficult
computational problems arose. A detailed presentation is given in chapter 4. The problem
was experienced as one that could not be resolved with the numerical methods so far
employed; it appears for the moment at least as a ‘missing hink" between the physics and
the corresponding mathematical expressions which have to be adapted to the numerical
simulation model in a synchronized manner. Eventually the problem was circumvented in
the simulations and these simulations then provide a very useful tool despite the still small
‘missing link'. After completing the description of this work, the study continues to the
problem of bank erosion.

If and when rivers lose their stability, the river channel alignment starts to change.
In fact no river has stability-as-such, but only a relative temporal equilibrium. The river
channel alignment changes because its banks are eroded on one side. Clearly the rate of
the plan-form movement depends on the rate of the bank erosion. The various bank
erosion mechanisms are discussed in chapter 5. Bank-erosion-rate modules are then
constructed according to existing theories and empirical formulae which have been found
from field observations and experiments. Once the rate of bank erosion is calculated with
sufficient accuracy, the river bank shifting can be simulated. In the present study this
involved making a grid mapping to the new channel alignment and the corresponding
computational domain. This work is described in chapter 5. After implementing this, the
model was connected to the bed-topography model as already described in chapter 3. The
resulting model is called a River Plan-form Movement model and the abbreviation RPM
is used. The conclusions and discussion are presented in chapter S, In summary, it is
found that the RPM model developed here can simulate a reasonable range of regular-
channel plan-form movements, but for certain particular cases, such as that of a movement
obliquely downstream, it is still not satisfactory at the present stage of its development.
It is concluded none the less that the RPM model introduced here is very promising and
deserving of further development.

16



INTRODUCTION

S P counted as the small dust of the balance,*

Ieniak XI., 15, AV,

1. INTRODUCTION

1.1  Aim and emphasis

River plains are the great centres of population, industry, commerce and
transportation, and for a number of reasons. The flat surfaces of plains are most easily
cultivated and generally contain the most productive seil. They became some of the
principal areas of population growth relatively early in human history. Their level surfaces
offer fewer obstacles to land transportation than do hills, mountains or plateaus, and the
rivers of plains are generally much easier to navigate than are those of rougher terrain.

Movement of the earth’s crust is considered to be an important geologic agent
causing modern river instability. Major shifts of many miles in the position of the
Brahmaputra River toward the west are auributed by Coleman (1969) to tectonic
movements. However, it is probable that, during a period of several years, neither
neotectonics nor a progressive climate change will have a detectable influence on river
character and behaviour. Then the instability of a river is a result of the slow but
implacable shift of a river channel through erosion and deposition ar bends. Such activities
as the cutoffs of meander bends cause a new channel alignment to develop, leaving behind
oxbow lakes, This implacable shift of rivers generally is a rather slow phenomenon but
it often has a great influence on man's use of rivers and valleys.

Since the dawn of civilization, mankind has faced problems associated with rivers,
and solved them to the best of its ability. Increased understanding of the mechanism of
morphological changes and effects of river training works call for the utmost care and
better physical insight, which extends from a state of descriptive empirical knowledge to
the gradual build-up of rational models. River bank erosion, and river meandering in
general, is one of the most important problems to be solved for economic reasons as well
as for the prevention of disasters.

The observation of a phenomenon is in general incomplete unless it results in
quantitative information (Alonso, 1967). Mathematical models are applied in order to assess
morphological changes quantitatively (Olesen, 1987). Therefore the aim of the present
investigarion is to understand the physics of bank erosion in alluvial rivers, as one of the
major factors affecting the formation of river patterns, to formulate the physical
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RIVER PLAN-FORM MOVEMENT IN AN ALLUVIAL PLAIN =0

phenomena in mathematical expressions so as to obtain guantitative information, and fo
develop a two-dimensional mathematical model for a river’s plan-form movement in
alluvial plains. The wltimate objective is to predict the future plan-form of the river. The
present study is primarily concerned with river bank erosion and stability problems of nop-
udal meandening rivers in alluvial plains.

Each chapter cited here is arranged by topic in order to compose a study which is
centred on the bank erosion processes and river bank stability. Like a mosaic, this study
is made up of separate chapters that relate to each other so as to form a meaningfil
pattern. Each chapter could in its term be greatly enlarged and detailed by experimental
and field results.

1.2  Alluvial plain classification

Alluvial plains have been classified by Melton (1936) into three basic types. These
are meander plains, built up largely of meander scrolls, covered plains, which are buil
up mainly of over-bank deposits and are generally characterized by the presence of levess
and an absence of meander scrolls, and bar plains, which have braided river channels and
no levees or meander scrolls. The present study concentrates on the first type, the meander
plain.

1.3 Scope of the study

In order to achieve the aim as mentioned above, the scope of the study is divided
into three fields of study as follows:-

1. Flow and bed topography in a meandering river
2. Fluvial processes and geomorphology of the river basin
3. Morphological computations in mathematical modelling.

In nature there are no geometrically straight rivers, Alluvial rivers have been
classified into many classes. An important class of rivers exhibits a relatively stable
meandering plan-form on the basis of differences in their curvilinearity, Next to this class
we observe some kinds of migration of meander bends. Bed deformation in bends and at
crossings in alluvial rivers is an intriguing feature in geomorphology since it governs, 10
@ high degree, the plan-form of a river. Every river has then in principle to be seen as 2
three-dimensional body. In order to gain an insight into the laws of river bed evolution,
plan-form, longitudinal profile and cross-section are considered as parts of the whole.
They are also parts of an inferconnected system which is furthermore controlled by the
discharge and sediment load.

Rivers on loose earth can be considered as conveyers, which consist of two parts
: a loose-boundary container, and a fluid mixture. These two are naturally interretated.
Therefore, siarting out from the natural bases of the formative processes of river bends
(ie. tectonics, the lithology, the climate, and vegetation ) and proceeding through the two
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INTRODUCTHION

important transportation processes (ie. run-off of water and the transportation of
sediments), an interconnected system can be developed as shown in Fig. 1.1. The
directions of influences are shown by arrows.

g LI AT R
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Fig.1.1 Controls on the morphology of niver beds

As mathematical models are becoming increasingly important in these fields, the
mathematical formulation of the relevant physical phenomena is a keystone to further
development. After this, it is necessary through the numerical integration procedure to
maintain a balance between computational time and accuracy of computational results.
Thus morphological compurations in mathematical modelling become an essential part of
the present study as a basis for obtaining practically-applicable results.

1.3-1 Previous work

Earlier work has of course to be studied as extensively as possible before an own
beginning can be made. Relevant theories are discussed in Chapter 2 and specific
contributions to these theories are introduced further in Chapters 3,4 and 5. In this section
only a general classification and overview of previous work is given.

Theoretical and experimental investigations of flow characteristics in bends with
flat beds were made by Rozovskii (1961) and Yen (1965).

In the case of a fixed bed topography in a river bend, many mathematical models

19




RIVER PLAN-FORM MOVEMENT IN AN ALLUVIAL PLAIN .

have been developed to study flow characteristics in bends, €.g. T"-'-'U'd'm‘-'*“f?““al ";“d'-’h
of Huang et al. (1967), and De Vriend (1976). Interactions between flow and bed
topography in movable-beds have been investigated in considerable detail. Some important
results of works in this area are: Yen (1967, 1970), Engelund (1974), Kikkawa et al
(1976), Onishi et al. (1976), Zimmermann and Kennedy (1978), Falcon (1979), and
Odgaard (1981), Struiksma et al. (1985), Blondeaux and Seminara ( IQES},I]I:H]H and
Nishimura (1986), Odgaard (1986a, 1986b), Ikeda et al. (1987). However, until now, the
temporal evolution of bed topography has been only a little studied by comparison with
this areas. Among the studies are these of Olesen (1987), Yen et al. (1990), Shimizu et,
al. (1990) {3 -dimensional model}.

Based on the available knowledge, the present study falls into this last category,
and an own mathematical model is developed in Chapter 3.

Stability theories of fluvial meanderi ng have been produced by many investigators;
Adachi (1967), Hayashi (1970), Sukegawa (1970), Engelund & Skovgaard (1976), Fredsoe
(1978), Ikeda et. al. (1981) and Olesen (1983), '

From these investigations, three instability mechanisms can be identified : -

1. The bar instability mechanism found by Hansen (1976) and Callander (1969) and
included in the work of Adachi (1976), Hayashi (1970), Sukegawa (1970),
Engelund & Skovgaard (1976), and Fredsoe {1978).

2. The bend instability mechanism found by Tkeda et. al. (1981): a stability analysis
of a sinuous channel with erodible banks allows for the delineation of a bend
instability that does not occur in straight channels, and differs from the alternate-
bar instability.

3. An idea that the development of meanders is caused by a stationary wave, a
proposed by Olesen (1983). A steady-state analysis of the linearized mathematical
model in the case of generally low erodibility of the banks gave an adequals
explanation.

These earlier studies are used as a foundation for the present study of stability and
migration of alluvial river banks. Over recent years a major research effort has been made
to develop grid- generation methods which can adequately discretise complex geometrici
regions, together with adaptive techniques which can ensure that the grid reflects the
features in the flow-field. Some of these methods are, for example, structured meshes
from partial differential equations, conformal and orthogonal mapping, algebraic mesh
generation, automatic generation of unstructured meshes, mesh adaptivity techniques,
geometry modelling and surface grids,

In fact, the above mentioned are merely nomenclatures for various forms of

numerical grid generation, 'l'hel essence of this is that, instead of considering and
calculating all points in the continuous domain, one selects a subset of points within &
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domain at which flow quantities can be calculated. The combination of points and
connections between points defines a mesh or grid on which numenical methods for the
solution of the flow equations can be constructed. The assumption 15 then made that the
information at these points is sufficient to describe the complete flow-held. The idea
follows simply from a demand for accurate solutions of ever more realistic problems.
Obviously, there are many aspects which must be considered if accurate computer
simulations are to be achieved.

Ome writer on numerical grid generation, Weatherill (1990), said, "some success
in this area has been reported although there is still some way o go before complete
adaptation is routine in computational fluid dynamics”, Therefore, in the present study,
after much analysis of economic and accuracy requirement in the light of the particular
objects of the present study, it is shown that the negative factors outweigh the positive
ones in existing approaches; hence the decision 1o propose a new method see Section 5, 10.

1.3-2  Present study

The present study consists of four major parts. In the first part, a two dimensional
mathematical model for a meandering river is developed in a curvilinear co-ordinate
system, Grid mapping for the computational domain of the entire area ( a complete
meander wave length or a succession of bend trains of long-lasting meander length ) is
developed. This type of grid mapping can offer a more acceptable representation of the
plan-form of a river which is to be simulated. The difference between a representation by
a sine-generated curve (which is the most commonly used) and that of a series of circular
curves with different radii of curvature are shown in Figures 1.2 and 1.3, Details are
explained in Chapter 3 and derivations are presented in Appendix A. The model is verified
in both cases using flume experiments and results obtained from a natural river, the Waal
river in the Netherlands. The agreement is found to be good. The second natural-river case
of verification is performed on the river Ishikan in Hokkaido, Japan. The agreement is
also good and it confirms that the present model is reliable.

In the second part of this study the (intermediate) goal of the investigation is to
define a relationship between depth, discharge, slope and sediment properties that can be
used in a wide range of siluations where uniform flow conditions are present and which
can also be adapted for use in the mathematical model of the first part of the present
study.

In the third part, which is based on previous knowledge, a heuristic approach to
determine the optimum river width is attempted., From this part of the study, one can
deduce whether river migration or a relative stability of the bank will occur.

In the last part, a simple geometric construction of a new grid mapping together
with a curve-fiting method is proposed. Bank erosion modules are developed and a
mathematical model leading to a plan-form movement is also developed. Finally, the
hydrodynamic model and bed topography model of Chapter 3 are added in front of the
bank erosion model, followed by a plan-form movement model. In this study, every part
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is made separately as a modular construction. By so doing, the model becomes more
flexible and reconstructable while modules can be changed (or others added) so as 1o
describe a whole series of different geomorphological properties along the bank line of the

entire study area.
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Fig. 1.2

Sine generated curve as a representative of meandering rivers
(commonly used). {Source of the figure ; Struiksma et al., Nov. 1980}

Fig. 1.3

A serie of circular curves as a representative of meanderi ng rivers (the
present study). {Source of the figure and data ; Struiksma, Separate

No. 85/06, Oct. 1985}




INTRODUCTION

The present study tries to put together three aspects of river evolution (ie.
geomorphology, fluvial hydraulics and hydrodynamics) into a simulation model called
RPM which stands for River Plan-form Movement model. In order to verify the RPM
model, physical evidence for lateral erosion of natural rivers as well as flume experiments
are studied, However, the input data needed for the RPM model are rather specific and
are not fully available from field data as derived from the literature survey. In fact, field
data for such bank-line movements were traditionally documented in such a way that only
the most interested variables are measured and listed in the light of geomorphological
aspects, geological aspects, and geographical aspects. Nothing specifically new is done
from a hydrodynamic paint of view,

Accordingly, the verification of the model cannot be carried out for a bank line
displacement of a natural river but only for bank erosion rates. However many of these
can be used as some guide lines. For example, the Mississipi river (width about 790 m ;
depth in flood, 36 m ; sine of gradient, 0.000066 ; mean annual discharge, 17000 nr/s)
has provided some reliable estimates along a total water distance of 1355 km by a Lieut.
Ross in 1765, the United States Land Office survey of 1820 to 1830, the Mississipi River
Commission surveys of 1881 to 1893, and 1930 to 1932, and subsequent surveys, From
these, forty selected meanders, with an average lateral amplitude of 128 km, radius of
curvature 3 km and, channel width 0.8 km, have migrated an average of 2.24 km laterally
in 167 years, or 13.44 m a year, Such information can be used as a guide line for the
present model. Besides, this model is developed for study purposes and it functions under
its hypothesis to fulfil the main study objectives. After this, the conclusions are
summarized and some discussions are added by way of a closing of the present study.

1.4 Outline of the thesis

The present study is presented in six chapters, After the introduction, Chapter 2
reviews the relevant theories. The main parts of the whole investigation are reported in
Chapters 3,4 and 5. A summary of conclusions and recommendations resulting from
Chapters 3 to 5 are presented in Chapter 6.

In Chapter 2, the flow and bed topography in a meandering river are studied and
are presented. In order to complete the scope of the present study, the stability of self-
formed alluvial rivers, their bank erosion mechanism and finally their river channel
patierns and evolutions are studied. Some key points are reviewed.

In Chaprer 3, a two dimensional mathematical model for a meandering river is
developed in a curvilinear coordinate system. The essential parts of the model are
described. The model is verified by comparing its results with measured data from flume
experiments, as well as by comparing computational results with measured data from the
Waal river in The Netherlands and the Ishikan river in Japan. The performance of the
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model is evaluated. Thus Chapter 3 facilitates the selection of the various types :uf gradeg'
meandering rivers that are used in Chapters 4 and 5. The codes produced for this Chapter
are given in Appendix-A,

In Chapter 4, the stability of meandering rivers is studied in connection with the
friction condition and the sediment transport capacity. A mathematical model is the
developed for the shape and the dimensions of the stationary dunes based upon a theory
of Fredsae, (1982) together with an alluvial roughness-predictor model. The corresponding
code is given in Appendix-B. An attempt is made to determine the optimum river widi,
A heuristic approach is used and while it is proceeding a new shear-velocity relationship
between plane bed and dune-covered bed is found for a constant discharge condition, This
15 new and the reason that it cannot be experienced when using physical models js
explained. It is essentially only through computation that this relation has been found, This
velocily relationship facilitates the morphological modelling of a more acceptable friction
condition for a proposed regime in alluvial rivers. From this study, one can deduce
whether river migration or a certain stability will occur in a given meandering river. Thus,
when the river width is not optimum (stable), then the model developed in the next chapter
must be used to predict the changes that will oceur.

In Chaprer 5, the bank erosion mechanism in alluvial rivers is studied,
Mathematical expressions for various bank erosion rates are derived. After the
verifications of computed bank erosion rates, a mathematical model leading to a river plan-
form movement is developed and a new position of the river is simulated. An automatic
grid-generation procedure is proposed. This technique may bring out the simulation of
river plan-form movement in an alluvial plain which actually is a meander migration
model. Some numerical experiments are carried out. This part of the study provides a tool
to predict river migration in alluvial plains.

Finally, in Chapter 6, the most important conclusions are summarized and
discussed, and suggestions for further research are given.

The derivations, detailed explanations and equations of the models are listed in
appendixes A B and C which follow, respectively, chapters 3,4 and 5.

; For the definition of graded rivers; see Garde and Raju, 1985, 'Mechanics of
sediment transportation and alluvial stream problems®,
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"nfor folerance, for reasoms, for the adveniure aof ideas, and for the search for truth.®

Juwaharlsl Nebra

2. REVIEW OF THE EXISTING THEORIES

2.1 Introduction

This chapter presents a review of alluvial river form and processes, and attempts
1o integrate the distinct but related approaches of geomorphologists, geologists,
geographers and, hydraulic engineers. From which physically based numerical model will
be developed in the following chapters. Thus mathematical models of flow and bed
lopography in meandering rivers are also reviewed,

2.2  Selection of the theories and ideas

A researcher who is working in the field of science gathers many experiences,
including confusion and contradiction, For example, the idea of Lord Kelvin, "when you
can measure whai you are speaking about and express it in numbers you know something
about it; bur when you cannot measure it, when you can not express it in numbers, your
knowledge is of a meagre and unsatisfactory kind ", has often been quoted by scientists and
researchers. On the contrary, two professors of Statistics, Yule, G.U. and Kendall, M.G.,
say, "This remark has often been guoted with an approval which it does not altogether
deserve - it does not, for example, do fustice to the work of Darwin and Pasteur, o name
only rwo of Kelvin's contemporaries. But there can be no denying that it expresses a point
of view which many people will endorse. * Therefore it should be mentioned here that this
study only follows the selected ideas which selections are made both intuitively and
deductively by the author. In this context, relevant but distinctly opposed theories are also
discussed in the corresponding sections and chapters.

2.3  Division of the subject matter

Such a complex subject as this has to be divided clearly if only in order to provide
a properly organized presentation. This thesis covers a very wide range whereby it
introduces material from various different areas of science and technology, such as
hydraulics, geomorphology, continuum mathematics, computational methods in general
and mathematical modelling in particular. Accordingly, the subject is divided here into
three main parts referred to as Part A, Part B and Part C, as already introduced in the list
of contents of this chapter.
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24 Part A

2.4-1 Flow and bed topography in meandering rivers

2.4-1.1 The secondary flow .

A secondary flow or spiral (helical) flow that occurs in curved channels was first
observed and described systematically by Thomson in 1876. This phenomenon is due

mainly to
1. friction on the channel walls, which causes higher filamental

velocities near the centre of the channel then near the walls.

2. centrifugal force, which deflects the particles of water from
a rectilinear, or straight-line motion,
3 a vertical velocity distribution which exists in the approach

channel and thus initiates a spiral motion in the flow.

In curved channels, friction is greater than it is in the straight channel and this is
naturally associated with the spiral flow that leads to local bed and bank scour. The
relation between the spiral flow and the radius-to-width ratio has been investigated
experimentally by (Shukry, 1950) using a bend in a rectangular steel flume. In this and
many subsequent studies this is called the secondary flow. The "strength® of the secondary
flow, S, is defined as the ratio of the mean kinetic energy of the lateral motion to the total
energy of the flow at a given cross-section. Since the kinetic energy of flow depends on
the square of the velocity, this provides a relation of the form

pI
Se = o 2.1)

v = magnitude of the mean-velocity vector projected on the yz plane
u = mean-velocity over the section
5 = strength of the secondary flow

in which

¥i

The strength of the secondary flow decreases considerably with increasing Re, the
Reynold's number, It also decreases gradually due to the increase of radius to width ratio,
RJ/W. (We observe, following (Shukry, 1950) that a value of approximately R /W =3
gives a minimum value of 5. ie., the curvature effect approaches a minimum. It similarly
decreases when the width to depth ratio decreases, which in turn implies that this strength
increases in shallow-water flows. Again the strength increases when the deviation angle
of the bend becomes larger. More specifically, from 6/180° = 0 to 6/180° = 0.5, the
increase in the strength is nearly double that obtaining for the range from 0.5 to 1.0.

Flow charactenstics and sediment movement are much more complex in channel
bends than in straight channels.Theoretical and experimental investigations of flow
-;:Ih;aﬁcleriﬂics in bends with flat beds have been made by Rozovskii (1961) and Yen

).

A typical channel cross-section topography in a meandering channel 13

characterized by three zones (fig. 2.1): a relatively deep thalweg located along the outef
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concave cul bank; a point bar top or platform along the inner bank; and the point-bar
slope, which connects the two, making up the central portion of the channel. One of the
primary characteristics of flow through a meander is the helical- or secondary-flow cell
(Leopold and Wolman, 1960; Rozovskii, 1961). The combination of centrifugal force,
resultant superelevation and cross-stream pressure differential create a small transverse
current. When coupled with the primary longitudinal flow, this creates a helical-flow cell
in the bend (Fig. 2.2-A). The longitudinal velocity field differs from that in a straight
channel because the position of maximum velocity varies through the bend, shifting from
near the inner bank at the bend entrance to the outer bank near the bend apex, where it
stays until the bend exit (Leopold and Wolman, 1960; Dictrich and Smith, 1983, 1984;
Johannesson and Parker, 1989).

COMCAVE
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Fig. 2.1 An illustration of a meandering river cross-section

Dietrich and Smuth (1983) and Thome et al. {1985) noted that the helical cell was
present only in the deeper part of bend cross-sections, while all transverse flow over the
point bar platform was directed towards the outer bank (Fig. 2.2-B). In addition, smaller
transverse cells of opposite rotation to the main helical cell have been measured near the
waler surface adjacent to the outer, concave bank of several rivers (Fig. 2.2-C: see Bridge
and Jarvis, 1982; Thorne et al. 1985) and near banks and at sudden depth changes in
flumes (Tominaga and Nezu, 1991).

The mathematical modelling of such flows and their related channel characteristics
has proved to be difficult. Most such models are based on simplifications of the equations
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Fig. 2.2 An illustration of the development of a secondary cell

of continuity for water and sediment and on the Reynolds" (or St. Venant's) equations of
motion (Rozovskii, 1961; Yen and Yen, 1971; Engelund, 1974; Smith and McLean, 1984;
Odgaard, 1986). As noted by several researchers (Odgaard and Berps, 198%; Yen and Ho,
1990), most of these models simulate bend flow and channel topography only in the "fully
developed” portions of the bend, i.e., where velocity and thalweg depth do not vary
longitudinally. Other models predict these characteristics throughout the bend, even when
velocity and depth change downstream (Dietrich and Smith, 1983; Engelund, 1974; De
Vriend and Geldof, 1983; Odgaard, 1986; Yen and Ho, 1990). In addition, considerable
disagreement exists over the simplifications and eliminations that have been used to solve
these equations (Dietrich and Smith, 1983).

Most of the mathematical models have been tested or verified in flumes, some of
which had fixed beds (Yen and Yen, 1971) or constant radius of curvature segments
connected to straight segments (Yen and Yen, 1971; Odgaard and Bergs, 1988). Even
when model testing is done on rivers with constantly-varying radii of curvature and mobile
bed materials, problems with measurement accuracy of the various model components
often dominate the final result (Dietrich and Smith, 1983).
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1.4-1.2 Sediment transport in general and sand transport in particular

The mechanisms of transport of uniform and graded sand have both similarities and
differences. The movement of sand and gravel in streams is usually classified under the
two headings of bed load and suspended load (i.e. wash load is usually neglected). The
movement process of bed load and suspended load are different and the size of the
material are also different. The difference in movement processes of uniform and non-
uniform grains are considered only for the bed load since gravels cannot be suspended in
a gentle flow, The formulae used (o estimate the bed load discharge are numerous, from
the well-known Einstein's function {1950) to recent time by many researchers. Although
the sediment discharge is usually expressed as a function of the flow intensity, the
movement mechanism of sand grains is not completely clarified yet and these formulae are
dynamically insufficient. The present situation is that a universal theory of sand movement
has not been established. In order to clarify the mechanics of such a ¢complex sand
movement in a stream, methods of measering the movement of a single sand particle in
a flow and researching the characteristics of sand movement as a group must be
considered. Such an investigation was carried out by Yano et al. 1969, who investigated
the mechanics of sand movement as a group phenomenon. From their attempt it was
reported that:" sand grains start to move by hydrodynamic drag forces acting on a sand
grain caused by mean velocity and turbulence of flow and collision of moving sand grains
with bed ones, but they usually rest after moving a certain distance. The movement is a
repeated phenomenon of irregular and intermitient motion".

The average travelling velocity of large sand grains in graded sediments is larger
than that of uniform sediments due to the accelerating effects of the grains, and, on the
other hand, the velocity of small sand grains is smaller than that of uniform ones due to
the hiding effects of the grains. It was found that such a phenomenon also intrudes when
measuning the rate of transport of sand grains in graded sediments,

2.4-2 Mathematical model in a 2I)- bend; the extent to which mathematical Models
have been developed, applied and extended.

In the case of a fixed bed topography in a river bend, many mathematical models
have been developed to study flow characteristics in bends. (Eg. two-dimensional models
of Huang et al. (1967), De Vriend (1976), Smith and McLean (1984), Ali (1985) and
Olesen (1987).)

Interactions between flow and bed topography in movable-beds have been
investigated in great detail.Some important results of those works are as follows:

-Yen (1967, 1970) investigated the equilibrium bed topography and its effects on flow in
a channel bend with fixed walls,

-Engelund (1974) analyzed the movement of sediment in bends, and employed sediment
continuity and transport formulas to predict the equilibrium bed topography.

-Kikkawa et al. (1976) showed that the bed evolution in the fully developed region of
channel bends can be simulated by an uncoupled scheme.
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-Onishi et al. (1976) suggested that hesd [[‘ipl'}gl'ﬂl'l'h}' enhances the ﬂﬂmmifﬂfml!}* of the
water discharge, resulting in a greater sediment transport,

-Zimmermann and Hcﬂnidy :1%?'?3}, Faleon (1979), and Odgaard (1981) analyzed the
transverse bed slope in the fully developed region of the bend, and concluded tha the
weight of sediment particles and the shear force are the dominant factors influencing the
transverse movement of sediment,

-Struisksma et al. (1985) investipated the wavelength and the amplitude of the bend
deformation, and also derived a form for the transverse bed profile in the fully developed
regron of the bend.

-Blondeaux and Seminara (1985) studied the mechanisms of meander inibiation and i
growth, and found that alternate-bar formation and bend amplification are due to differen
mechanisms,

-lkeda and Nishimura (1986) showed that the inclusion of a suspended load can increas
the maximum scour depth by as much as 8% and that the secondary flow in a sinuous
bend has a phase lag relative to the bend's plan form.

-Odgaard (1986a,1986b) considered the transverse mass shift to be due to the secondary
flow and the bed topography, and employed a mass-flux balance to link the equation for
equilibnum bed profile in a bend 1o the momentum equations.

-Ikeda et al. (1987) found that the sorting of bed material can reduce the maximum

equilibrium scour depth by as much as 30-40% in the fully developed region of uniformly
curved bends.

However, in comparison with the preceding, until now, the temporal evolution of the
bed topography has received few studies. Some of studies published are those of Olesen
(1987) and Yen et al. (1990). The present study follows this last category and later looks
into the process of bank erosion as well.

25 Part B
2.5-1 The stability of self-formed alluvial rivers

One of the main difficulties of our subject is that the bed confi iguration depends on
the discharge. Moreover, the hydraulic resistance is a complicated function of the bed
configuration, so that we are faced with a very intricate problem of mutual interaction, As
the problem of sand wave formation depends on hydrodynamic stability, we even find thal
changes in bed formation may have a nearly discontinuous character at a certain stage
(corresponding to a shift from the 'lower’ 1o the *upper’ flow regime),

~ The minimum width of an essential straight alluvial channel capable of transporting
a given quanuty of water, with or without a mobile bed material or a wash load, is related
to the tractive strength and the sliding strength of the bank soils, either alluvial or residual.
In addition, the variation of the bed level at the banks due to bed forms, alternate bars,
and other three-dimensional flow effects is an important factor, This variation can be
defined in terms of the ratio of the maximum depth along the bank to the average depth
over the bed. The use of bank soil properties to determine stable channel widths indicates
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that more than one width and slope are possible lo carry a given water discharge with or
without bed-material load. For design purposes, the minimum allowable width is usually
the best choice (Stevens, 1989),

Historically, there have been three approaches to determining the stable
(noneroding and nondepositing) width of such a channel. The earliest was the Lindley
(1919) regime width, followed in the next forty years by numerous other width predictors
of the same type. In 1955, Lane presented the tractive force theory developed by many
persons at the U.5. Bureau of Reclamation. More recently, concepts of minimum stream
power (Chang 1980) and maximum sediment transporting capacity (White et al_, 1982)
have been put forth as suitable width indicators. From a theoretical point of view, it is the
interplay of the properties of the fluid and the soil at the banks that determines the
minimum and maximum stable width of erodible channels which are essentially straight.
The minimum stream power method underpredicts appreciably the widths of Punjab and
Sind canals wider than 150 ft (46m) but fits smaller canal data much better. The maximum
sediment transport carrying capacity method was similarly found to underpredict the width
of large canals (widths greater than 33 ft or 100m) by significant amounts on the average.
Agreement was found to be much better for smaller canals, with widths of 10 to 30 ft (3
to 10 m}{Sieven, 1989),

2.5-2 Stable-width eriteria

In order for the banks to be stable, two criteria must be satisfied. In the first place,
the shear stress on the banks must be such that the suspended sediment is not deposited
on the banks and no particles are eroded from the banks. Some deposition and erosion
might of course in practice occur, but it should remain on the average insignificant.
Secondly, the banks must remain free from sliding failures or other types of geotechnical
failures under adverse conditions in the soil. In this work, the first is labelled the *tractive
strength™ criterion and is directly related to the tractive force; the second is called the
"sliding strength” criterion and is only indirectly related to the tractive force. The sliding
strength concemned with subaerial/subagueous weakening and weathering which are
associated directly with soil moisture conditions.

If we consider the tractive strength of cohesive soils, we observe
immediately that fine particles of suspended sediment, such as clays, are carried in greater
concentration than are larger particles at and near the surface of the flow. Clay particles
have electrical charges, on their edges as well as on the flat sides of their lamella, where
there are some unshared electrons from oxygen molecules in the silicon-oxygen layering
common in most clays. The attraction or repulsion forces between charged particles of
clay can be much greater than the gravity force acting to settle all the particles. The
gravity force is of course proportional to the submerged weight of the particle, while, as
illustrated by Lane (1955), the allowable shear stress for clays is unrelated to the particle
size. In wide prismatic channels, the shear stress on the banks near the surface is low,
especially for sloping banks (Ghosh and Roy, 1970) so that clay particles moving near the
bank can become deposited even on a vertical face if the shear stress at the surface is very
small. Thus a number of clay particles are deposited when the shear stress is low, but as
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the bank builds-up into the flow, the slope steepens and the shear SITEss INCreases. Thy,
a criterion for mathematical (and physical) stability is present and this already indicay
that, as the phenomenon of bank deposition develops, its rate of development decreas,

The same is true for erosion: when particles are plucked from the top of the by
by the shear stress of the flowing water, the slope decreases, which in turn decreases |k,

shear stress.

In the case of non-cohesive soils, the tractive strength which the soil possesses
resist the dislodging of particles is directly related Lo the easily-measured properties of he
individual particles. By neglecting the lift forces on the particles on the bank (see Graf
1984), Lane's (1955) value for tractive strength for sand is:

mnzﬁ [T
C=0(S - 1)yD, cos 8(1- !anzqf:] (2.3
in which
f, = critical Shield’s parameter
5, = specific gravity of the solid particles
8, = side-slope angle measured from the horizontal.
Dy, = median sieve size (by weight) of the particles on the side slope
@ = angle of repose for the particles

When the flow at the banks is hydraulically rough, 8, = .047 (Gessler, 1971) bu
for small particles and high viscosity §, can be as low as (0.030). The tractive strength of
a cohesive soil is not so easily related to the other soil properties: the electrochemicl
forces which dominate in cohesive soil are only partially understood (Partheniades 1962
_15‘?;] and vary for the most part with changing moisture content and with dissolved solid
in the water,

26 PartC
2.6-1 Bank erosion mechanism of self-formed alluvial rivers
There is a considerable divergence of conclusions concerming the dominant
mechanisms of bank retreat, as shown below:
"The major controls on bank erosion remain unclear at present" (Hasegawa, 1989},
The bank retreated primarily by mass failures of overheightened and ammmﬂﬂf

barnks.
(Lirtle, Thorne and Murphey, 1982
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The shearing of bank marerial by hvdraulic action at high discharges is a most
effective process, especially on non-cohesive banks and against bank projections.
(Knighton, 1984)

The erasion of a (river) bank is not the resull of erosion by high-velocity water,
whether in a concave bank on a curve or in a straight section. Rather, for effective erosion
o occur, the material must be loosened-which in this siream, is done by the formation of
ice crystals in winier.

Leapold, 1973)

There are many authors who believe that it 15 combinations of processes that are
important (e.g. Hooke, 1979; Thorne, 1982; Lawler, 1987). Perhaps, in view of the wide
range of alluvial materials, riverine forms and hydroclimatic environmenis encountered,
a variety of conclusion is to be expected, However some hypotheses are selected to be
followed in this study and they are reviewed here in order to try to disentangle competing
hypotheses of process-dominance in river bank erosion systems.

2.6-2 The overall history of meandering rivers: river channel patterns and their
evolution

2.6-2.1 Time scales of alluvial rivers

There are several possible space and time scales for considering morphological
changes in alluvial rivers, each valid for its own specific purpose. At the micro scale,
studies have been carried out on the mechanics of entrainment and transport of an
individual particle within a uniform bed material. From flume experiments, the drag and
the lift forces can be calculated but these cannot be transferred directly to models of
transport and morphological changes of natural channels over larger space and time scales
and associated vanability.

At the meso-scale, physically-based equations which model general reach processes
have been developed for flow resistance and sediment transport. These apply to average
channel conditions and are general. Normally total transport rates are predicted without
regard for sediment grain size or calibre, although equations are now being developed for
routing different size fractions. Morphological models to predict scour and fill, using these
equations in conjunction with continuity principles, enable spatial and temporal changes
in channel depth, slope and velocity to be simulated. A fixed width and plan shape have
to be assumed and, given knowledge of flow and sediment inputs, the spatial and temporal
response of the river can be modelled. In reality the input conditions can also change in
response to erosion and deposition, which further limits the application of this type of
mathematical model. Even downstream from dams, where feedback mechanisms are
precluded, problems arise because of difficulties in predicting the rate at which the bed
becomes armoured, When considering larger-scale development of river systems over
longer time periods, macro-scale approaches can be adopted. Instead of routing every flow
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which transports material through a series of reaches, the average bankfull dimensions of
the river can be modelled over lime and space based on systemalic changes that occur iy
the dominant, channcl-forming Now and its associated sediment load. Although process.

based, it uses a simpler transport funclion (o simulaie channel change.

Finally mega-scale approaches, which consider the sequence of mll'lﬂFT, sedimen
supply and sediment transport, are being developed by geomorphologists to investigate the
more dynamic and discontinuous aspects of channel development at the drainage basi
scale. Sections located between zones of sediment supply and transfer, where temporary
storage occurs, have a considerable tendency to lead 1o very rapid changes in channe)
geometry, In such sediment-balance models, based on long-term average sediment Joads
throughout the nver system, only general conclusions can be drawn about the nature of
the channel, zones of high deposition being characterized by braided channels or alluvia
fans. These black box models provide no direct physical insight into the processes
controlling sediment transport and channel adjustment.

To manage a river system effectively, particularly with regard to river engineering
schemes, il is necessary to have due regard for its natural stability (Hey, 1987). Channe
Fesponse 1o any natural or man-made induced changes will depend on the degree of change
and the prevailing stability of the channel. Consequently it is very important to identify
the controls on natural erosion and deposition and channel response to such activity, This
can be achieved by considering the interaction between channel form, flow regime and
sediment transport. All these factors are interrelated during periods of dynamic change
through the operation of a number of process equations. A simple macro-scale model
enables the nature of this interaction to be outlined in general terms and, although it is
essentially concerned with the longer-term evolution of river channels, it is suggested tha
the principles apply equally well to changes over shorter, engineering time scales (Hey,
1987).

2.6-2,2 Theories of meandering

The process of initiation of meandering and the mechanism of meander
development have been studied historically by many researchers. Since the present study
18 concerned primarily with the migration of meandering rivers, it is naturally als
concerned, al least on part, with the meander-development-mechanism. Therefore a brief
review has been made of some of the theories that have been advanced to explain this
process, as follows:

{a)  Earth’s rotation theory: An object moving over the Earth’s surface is effected
by a transverse force (i.e. Coriolis force) normal to its path. This force represents the
inertial reluctance of a moving body to participate in the rotational motion of the Earth
According to Baer (1860) and Gilbert (1884), the force produced by the Earth's rotation
i sufficient to deflect the stream, The tendency of the Mississippi river and some rivers
in Alaska (U.5.A) o deflect towards the right is still sometimes quoted in support of the
above argument. However, Quraishy (1943) already objected that the tendency of a stream
to deflect either to the right or to the left is merely a matter of chance, and the force due
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to the Earth's rotation is usually very small: the erodibility of the bank material certainly
plays a much more important role in this environment,

On the other hand, Neu (1967) again demonstrated how a secondary circulation
may be developed in a stream because of the Eanth's rotation. The relative intensity of this
secondary circutation depends on the latitude of the place and the depth-to-velocity ratio
for the stream: for values of depth-to-velocity exceeding 20, the flow may deviate from
its axis by as much as 20°. Deviations of the order of 10* to 15° were observed on the
St. Lawrence river (Canada) but even Neu concluded that at least a part of this deviation
might be due to the secondary circulation naturally present in the river and not induced
by Earth's rotation,

The older geographic literature pays much attention to the question of the influence
of the earth’s rotation on the movements on its surface. Up to the mid-19* century the
standpornts of Hadley(mentioned in Henkel, 1922, Mangelsdorf er al.,1980) prevailed,
ascribing the direction of the trade winds to the rotation of the earth, using the difference
in velocity at different latitudes as an explanation, It was then gradually recognized that
every movement of a body on the earth is deflected to the right on the northern and to the
left on the southern hemisphere. However, it was assumed that the theoretically postulated
deflection was too weak to exert any notable influence on flowing water.

In 1860 the Baltic scientist K. E. von Baer published a report in the Annals of the
St, Petersburg Academy of Sciences under the title: On a general law of formation of river
beds. He attempted to prove that the steep nature of the right and the flat shape of the left
bank of most major rivers, could be explained through the rotation of the earth. This long
and hotly-debated theory has since become known as Baer's law (mentioned in
Mangelsdorf er al., 1980). The introductory statements of Baer himself are: "The flowing
water, coming from the equalor to the poles, will have a rotational velocity greater than
that of the higher latitudes and thus will press against the eastern bank, as the rotation is
directed east and with it also this little surplus brought along by the water flowing from
lower to higher latitudes. On the other hand, water flowing from more or less polar
regions to the equator will arrive there with lower rotational velocities and thus press
against the western banks. In the northern hemisphere for rivers flowing north, the east
bank is the right one”. As proof, this author described his observation of a number of
rivers and especially of the Volga, the right bank of which in Russian is called the “hill
bank” and the left bank the "meadow bank®. The high hill bank is the preferred area for
settlements, whereas in the swampy flats on the left bank only few villages are found. The
hill bank i5 subjected to continuous erosion which results in the collapse of enormous
masses of rock from time to time. Olearius descried in his Parsian Travel Notes (1666),
that this process led to the burial of an entire ship and its crew which had been lying in
the shelter of the bank above Astrachan.

Baer collected reports not only on the Russian rivers but also on the other rivers
of the earth such as the Rhine, Nile, Mississippi, la Plata, etc. With only a few
exceptions, such as that of the left-hand tumn of the Euphrates near Aleppo, he found
support for his law of dextral deflection. He stated that this law would become more
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pronounced wilh a more north-south orientated course of the river. To support his theory
he even suggested evaluating statistically whether derailments of trains travelling exactly
north or south were more frequent to the right or to the lefi. He eventually tried 1
develop his law purely from physical factors, He was only partly _5“‘:":"'355{“] - being
himself a biologist - and he had to accept that the forces of deflection are very small
indeed, It was held against him that the real reasons for the undeniable asymmetry of river
beds should be sought rather in the prevailing wind directions and the condition of the bed
rock. Nevertheless, the author adhered to his convictions with his charactenstic intuition,

In the following decades Baer's law was repeatedly attacked. The protagonist of
this opposition was Zoppritz (in Henkel 1922 and Wegener 1925), who criticized Baer
severely by stating that in a straight river course the deflection force of the earth's rotation
would lead only to a gradient of the water level at right angles to the direction of flow,
The differcnce in height between the right and left water Jevels would be so small that it
could not exert any notable influence. He added: "For the situation on the Siberian rivers
which Baer without doubt described correctly, different explanations have to be found,
They must be sought with certainty in the westerly winds prevailing there throughout the
year”.

Fabre (1903) devoted a detailed discussion to the reasons for or against the validity
of Baer's law. Based on a 1789 article of the French hydrographer Lambardie, the
Morphology of the Earth's Surface of Penck (1894), and his own observations, especially
in the Gascogne area of France, he concluded that Baer's proposals on the influence of the
terrestrial rotation on the development of the cross-section of rivers could not be upheld.
For an explanation of this situation, meteorological and geological factors should be
preferred. Fabre's ideas culminated in the statement that the asymmetry of valleys and the
deflection of the thalweg are caused by geological and geographical factors, and mainly
those of torrential erosion and wind deflection.

During the 1920°s, the discussion of Baer's law was revived. Reference must be
made here primarily to Henkel (1922, 1928), who submitted cogent arguments for its
applicability. Wegener (1925) also arrived at a positive verdict, attacking Zoppritz for an
insufficient consideration of the dynamics of transport of solids in rivers. Eventually,
Exner (1927) found some basic proof for the applicability of Baer's law when allowing
water in a test model to flow over a sandy surface on a rotating disc. As was to be
expected, the right bank of the channels showed bulges when the disc rotated
counterclockwise. Exner mentioned that these tests were also carried out specifically to
disperse the doubts on the validity of Baer's law voiced previously by Schmidt (1942).
Finally, in 1942, Dantscher venfied this by calculating the forces acting in a river
according to these mechanical principles.

(b)  Disturbance theories: A disturbance in a straight channel travelling
downstream causes change in the flow pattern that result in meanders. The initial
disturbance could be caused by various circumstances. For example, an overloaded stream
could deposit some of its load behind an obstacle and thus cause an asymmetry in the flow
which might lead to meandering. According to Hjulstrom (1957) the irregular disturbances
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of turbulent flow may cause a transverse oscillation of the water surface which travels
downstream and causes a regular oscillation of the fluid mass, which leads 10 meandering.
Also an expennment has been documented which oblained meander patterns by allowing
water 10 enter a straight channel at an angle. Werner (1951) postulated that meanders are
initiated by some disturbance which, by inducing transverse oscillations from one bank to
the other, starts erosion and the first bend forms. This bend often constitutes a sufficient
disturbance 1o continue the process of meandering.

(e Helicoidal-flow theories:  The currently dominant theory is that meandering is
the result of helicoidal or secondary flow. The ideas developed in this regards have been
supported by experiments; for example, different types of secondary flow could be
obtained in successive downstream bends by causing artificial secondary flow at the
entrance to the first bend. Apparently any disturbance which produces secondary
circulation can lead to meandering. Since secondary flow is present even in a straight
channel, one may suppose that the secondary flow patiern must become unsymmetrical
before it can produce meandering. On the other hand a symmetrical secondary flow pattern
will induce meandering if the erodibility of the bank material varies along the length of
the stream. According to the Japanese researcher Fujiyoshi, a simple harmonic motion is
set up in the flow when the pattern of secondary flow in the channel becomes
unsymmetrical. From this concept, an empirical equation for the meander length M, is
given as follows:

M, = A, RS @.3)

in which R = radius of the meander bend

5 = sinuosity

A,= meandering coefficient ; f{(Chézy coeff., flow characteristics)
A, was found to vary from 75 to 125 for small streams, from 125 to 200 for medium
streams and from 200 to 300 for large streams,

(d)  Excess-energy theory: The idea behind this theory is that the process of
meandering is related to the energy content of the stream. Schoklitsch observed that the
meander formation might be due to the fact that the siope in such stretches is too great and
is not in equilibrium with the size of bed sediment grains. The similar statement by Inglis
is that meandering is nature's way of damping out excess energy during a wide range of
varying flow conditions: the pattern depending on the grade of material, the relation
between water discharge and sediment transport and rate of change of water discharge and
sediment transport. This means that a channel having an excess energy tries to increase
its length by meandering, thereby decreasing its slope. It has been found that generally in
meandering streams, the ratio of radius of curvature to width lies between 2 and 3, and
indecd Bagnold (1960) has shown that the bend loss becomes a minimum around this range
of radius-to-width ratios. From this, Leopold and Wolman came to believe that some
principle related to minimum energy is associated with meander formation. Although the
above-mentioned researchers agree about this theory, an objection exists, as usual:
Joglekar contends that the primary cause of meandering is an excess of sediment load
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during floods. He argues that a river tends to build a steeper slope by Geposilng scdimen
load on the bed when the load is in excess of that required for equilibrium. This e
in slope leads to a decrease in depth and this tends to increase the ""'“j'-h_“f the d!annﬂ i
the banks are not resistant, As soon as a slight deviation from a uniform axial flow
appears, it causes more flow towards one bank than the other, Add |r.u:rna.} flow is attracted
towards one bank, leading to a shoaling along the other bank, |_ntm-:lu-::mg the curvature
of flow and resulting in a meander pattern. Although Joglekar objects to the excess energy
theory, his idea too has been subjected to objections arising from cases which do not fi
in with the excess sediment load idea, such as the incised meanders that appear on 3

glacier surface,

(e) Instability theory:  Stability analysis is a well-known and useful means for
treating plan-forms in alluvial streams analytically. The analyses are based on the
condition that a straight channel with a mobile bed is only slightly deformed by a double
harmonic disturbance, so that flow relations obtaining for a steady uniform flow can be
used with minor modifications. A linearized formulation of the flow is employed,
essentially, in such analyses. Using a suitable sediment transport law, the resulting
equations are solved to obtain expressions for the variation of the bed profile with time.
The stability analysis is invariably carried out using the equations of motion and the
continuity equations for water and sediment. Depending on whether the analysis is one-
dimensional, two-dimensional or three-dimensional, one, two or three equations of motion
have been used. All these models assume steady, uniform flow and a rectangular channel
cross-section. The two-dimensional models usually assume additionally a constant velocity
over the vertical and a linear distribution of shear stress and pressure over the vertical.

2.6-2.3 Sediment transport in meandering rivers

The main sources of sediment in natural rivers are erosion by overland flow, river-
channel erosion, bank cutting and supply from small erosion channels formed in
unconsolidated soil. The term alluvial is usually applied to rivers in which the moving
sediment and the sediment in the underlying bed is of the same character. However, even
the rivers which flow in alluvial plains, the sediment transportation is not a simple
process. The bed configuration of the river depends on the strength of the flow and the
strength of the flow depends on the hydraulic resistance and the hydraulic resistance isa
complicated function of the bed configuration. Therefore the sediment transport process
is & very intricate problem of mutual interaction. Moreover, the sand wave formation
depends on hydrodynamic stability, the changes in bed formation may have a nearly
discontinuous character at a certain stage (shift from lower to upper flow regime). As the
sand wave formation depends on hydrodynamic stability, the cross-sectional form of the
river depends on the unequal distribution of the hydrodynamic forces which induced by
curvature of the river bend. In meandering rivers the cross-sectional forms of the most
parts of the river are asymmetric and the most common bed-feature is dune-covered bed.
The meandering river reach consists of the series of pools and bars, Consequently, the
transport process is different from that of sediment transport in straight rivers. As
discussed extensively elsewhere, the shoaling of the flow over the bar forces near-bed flow
(secondary flow) and, consequently, bed load transport across the top of the bar (Dietrich
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etal, 1989). In the pool it is well known that the near-bed flow (the transverse direction
Mow) is strongly inward. From the ficld observations of {Dictrich et al., 1979; Dietrich
and Smith, 1984; Dietrich, 1987), at the edge of the bar top, the coarse sediment travels
against this inward component of the secondary circulation by rolling, avalanching
obliquely down from the crests of migrating dunes on the side or face of the point bar, and
by being transported by trough-wise currents of obliquely oriented dunes. The finer
sediment crosses the coarse sediment as it is carried inward from the deeper water and up
onto the downstream end of the bar by the inward direction secondary circulation. This
is very important and well observed sorting process in the channel bends. Sorting occurs
because grain weight, which opposes the transverse direction near-bed flow. Thus the net
sediment transport in the meandering rivers results in'a dynamic balance of longitudinal
direction sediment transport and transverse direction sediment transport including above
mentioned sorting effect controlling the equilibrium bed lopography.



DEVELOPMENT OF A BED TOPOGRAPHY MODEL

....... what can be checked, what can be smulated, and of what price. "

LR DEVELOPMENT OF A BED TOPOGRAPHY MODEL IN A MEANDERING
RIVER

L Introduction

A mathematical model for two-dimensional morphological computations in alluvial
river bends 15 developed. In this model, a curvilinear co-ordinate system is used to define a
grid of computational points along the river, while two equations of motion, for the main
flow direction and the transverse direction, are used, but extended 50 as to account for the
vertical flow profile in the transverse direction (ie. secondary flow). Sediment transport is
then calculated in these two directions. The model is primarily intended for research
purposes. There were two main reasons for building such a simulation model. The first
reason was to study the morphological changes occurring in alluvial river bends, while the
second was to generate a set of simulated river morphologies sufficient to provide a basis for
the study of river plan-form movements. It is very well known that studies of alluvial river
bank erosion and its associated river plan-form movement are essential to the understanding
of the development of a bed topography. However there are many aspects to be considered
in the study of alluvial river bank erosion and plan-form movement (see also Chapter 5), if
only because no two nivers are identical and it is nearly impossible to derive overall
descriptions of river behaviour in a sufficiently generalised form. In the following chapters,
the miver width stability problem and the closely related problem of river plan-form
movement will be studied. Although the results of many flume experiments and observed
field data are introduced, the hypothetical examples of river behaviour are still necessary,
Hence, this chapter serves as a study of river morphology in alluvial river bends and as
means of producing working examples of river behaviour,

Although the present model follows the same main pnnciples as were used by
Kalkwijk and De Vriend (1980) and Olesen (1987), as just outlined in Chapter 2, the present
study introduces some further developments. In particular, the system to construct the grid
mapping for the computational domain is different and the manner in which the bed shear
stress in the transverse direction is used is also somewhat novel. Moreover, in the following
chapter the alluvial roughness is predicted in terms of the dimensions of dunes, and
representative roughness coefficients distributed over the entire computational domain are
introduced (see further Chapter 4). The model is then extended to provide a series of bank
erosion models which simulate the river plan-form movement. Consequently, a method to
regenerate the grid over time is required and one approach 1o this is proposed in Chapter 3.
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1.2  Descriplion of the model

The bed topography model consists of two parts. These provide the depth-averaged
flow simulation and the bed topography simulation.

3.2-1 Co-ordinate system

Since the H]ignmcnt of the river sections that are considered here E_l"-“-.- US-!.IHII}'
themselves sinuous, or curvilinear, it is realistic and convenient to use a r.:urv:!mmr Co-
ordinate system which follows at least to some degree the alignment of the river. The
differential equations describing the conservation of mass and momentumn must then be
formulated using a co-ordinate system (y, @, z), where ¢ and @ are orthogonal curvilinear
coordinates in the horizontal plane and where the z-axis is vertical and positive in the upward
direction.

The distance, taken along the co-ordinate curves ¢ = constant and @ = constant, is
indicated by s and n, respectively, in which the s-axis coincides with the channel axis and,
the n-axis is horizontal and perpendicular to the s-axis see Fig. (3.4). The co-ordinate system
is shown in fig. 3.1. The length of the infinitesimal arcs ds and dn can be written as follow
(Pipes, 1958, p.395):

ds =1, dy, withl, =1, (¥, 2);

dn = | do, withl =1 (, 2). (3.1)

LT

w0 e B

R S + 0

T

S

Fig. 3.1 (a)  Coordinate system (b)  Rigid-lid approximation
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The corresponding spatial derivatives of any function f(y, 0, z) are then:
afias = 1/, . afiay ; offan = 1/I, . dffde ; dfidz = afiaz {3.2)

The local curvature of the s-line is laken as positive when the positive n-lines diverge,
and inversely.

£ A ... (1.3)
R 0.9

e 2 (3.4)

in which R, = radius of curvature of y-axis
R, = radius of curvature of e-axis

This type of co-ordinate system can describe the three dimensional flow pattern very
well. However, according to Olesen (1987), it can be considerably simplified if only rivers
of constant width are considered. In this case any local n-axis can be taken as a straight line.
As a consequence of this simplification, a number of small inertia and friction terms vanish
in the mathematical model. It does not qualitatively or quantitatively influence the result of
the depth-integrated flow model: detailed derivations are given in Olesen, (1987). Kalkwijk
et al., (1980) gave a three-dimensional mathematical description of the flow in a curvilinear
co-ordinate system in which both horizontal co-ordinate axes are curved, but they avoided
the comprehensive description of the friction terms. In this case little or no advantage is
gained from using the curvilinear n-axis for this particular type of problem and, on the
contrary the computational time will usually be longer. Hence the n-axis is taken as a straight
line in the present investigation, i.e. R, - oo in Eqn. (3.4). The river then presents the
aspect of a sequence of circular arcs each of which has a constant radius but in which the
radius can change from the one segment to the next. Since the circumference of a circle ds
orthogonal to its radius, the coincidence of radial lines guarantees the local continuity in the
first derivative of the corresponding adjacent arcs (see Figs. 4 and 5 later).

3.2-2 Grid mapping

The first step in the grid mapping is the selection of a shape of the path along which
rivers flow (or a plan-form of meandering rivers) and its mathematical (geometrical)
expression. Between any two points on the valley floor, a variety of paths are possible,
including a straight path. Historically, the plan-forms of meandering rivers have been
represented by four different types of curves, as listed below. A path of greatest probability
formulation of the problem of river meanders was derived by Langbein and Leopold (1966).
This is based on the original theory of a class of random-walk problems developed by Yon
Schelling (1951, 1964). According to Langbein and Leopold (1966), the best way to
represent the meandering pattern is to have a minimum variance of the reciprocal of the
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radius of curvature along the mean down-stream dircction (ie. mean squarc of deviations in

direction from the mean down-stream direction), In mathematical expression, this means that
¥ (a/a8) = a minimum, in which as is a unit distance along the path and, a@ 15 the angle
by which direction 15 changed n distance as and also is the reciprocal of the radius of
curvature of the path in that unit distance as. From this point of view, the following four
kinds of curves can be ranked in order of ascending minimum variances as follows:

sinc-gencrated curve
circular curve

Singe curve

parabolic curve

e L Bl

It ¢an be seen that the sine-generated curve is the first in rank and the circular curve
s second. On the other hand, the fitness of the alignment produced by sine-generated curve
is poor for the non-regular meander paths, especially in the case of successive bends in
nature, where the amplitude and the wave length of each bend is different. This nature cannot
be successfully represented by a sine-generated curve. Therefore, if we take the other aspects
into account (such as flexibility, the mathematical formulation, exactness of the natural
alignment) the entire river reach can best be represented by a series of circular segments with
different radii of curvature. The illustrations are shown in Figs. 3.2 to 3.5,

LE = lengih slotg iiver hasd
LV = keegth mheag river walley
LEALY = simuosity
I‘ipmmdﬂhhﬂ.dh}'ilﬂﬂiﬂiﬂﬂmm
peesriii v, Doar vapremrd difees e i wapalive for Sowrrensd difesiton.
s .
Pt T Y S|
Ll ¥ | __r T
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bl aau il pey -
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1 LV Hewand
[
"'\-\..,,..' 1"‘ e R4
- _'I_ i ”
N qpiciiic
L S L
2 oot B
aee il
FECL s B

Fig. 3.2 System of sign conventions and sinuosity developed by circular arcs
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Fig. 3.3 Comparison between the natural alignment and the sine-generated curve

The location of the turning points (TF) are marked with heavy stars in the figure and
between two adjacent turning points an adequate number of computational points are placed
in order to obtain the desired solution. The advantages of this type of representation are three
fold; firstly, it provides a curve flexible enough to trace a river plan-form that is adequately
close to the natural river plan-form (as can be seen in the comparison between Fig. 1.2 and
Fig. 1.3); secondly, its mathematical formulation is both simple and sufficiently accurate;
thirdly, the river alignment can be started from an arbitrary origin in the (s,n,z) co-ordinate
system. Moreover, using the arcs of circles as the basic building blocks and by locating the
centre of circular curves of radii R, at various distances d,, a channel meander having
sinuosity ratios varying from 1.0 to 5.5 can be easily generated. In the physical sense, a
sinuosity ratio of 1 implies a straight river, while a value of 5.5 appears to be the limiting
value when consecutive bends cut into one another. In nature, meander cutoffs occur before
the value of sinuosity of 5.5 is reached. This approach can also be used to describe a
complicated plan-form like that of the skew bends shown in Figs. 3.2 and 3.5. Therefore this
method is versatile enough to describe practically all meander plan-forms. The procedure for
this type of mapping has only one fundamental rule, which is that a common tangent between
two consecutive segments has to be used. The example of such a grid mapping is shown in
Fig. 3.4, The equation of the curve (s-line) is expressed in term of the direction angle o
between an arbitrary horizontal line and arc/chord of the segment (see Eqn. 3.5 & Fig. 3.5).
The relevant derivations are presented in Appendix A.
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Fig. 3.4 An illustration of grid mapping
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f, = an angle subtend at the centre of each segment or of each distance step As;
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Fig. 3.5 The construction of an arbitrary alignment

3.3  Flow computation

The flow pattern in river bends is known to be fairly complex and three-dimensional.
In the river bend the magnitude and direction of the bed shear stress and the friction between
the water particles (strictly speaking, the particles of the fluid mixture) become very
important. For each particle in & vertical, the dynamic equilibrium (F = m a) has to be
observed both in the radial and the tangential directions. Since all the particles are influenced
by the radial water-level slope, but the centripetal acceleration (UYR) is larger at the water
surface than near the bed, because of the logarithmic distribution of U in a tangential
direction over the vertical, these forces will never be in equilibrium. Due to the shear
stresses between the respective fluid particles, however equilibrium is established. Since these
shear stresses can only be caused by asymmetric velocity distributions, the fluid particles
near the water surface will move in the direction of the outer bend, whilst those near the bed
will move toward the inner bend. To maintain continuity, a vertical velocity component is
present near the river banks. Thus the flow pattern is three dimensional as shown in Fig. 3.6.

The computation of this three dimensional flow comprises a computational procedure
for steady flow in curved channels with two main components. These are the procedures
based on the integration of the depth-averaged main flow equations including the convective
influence of the secondary flow, and the procedures based on the integration of the complete
three-dimensional flow equations. The predictions of the second group yields better result
than the first group in critical cases; however for the many rivers that are shallow and have
bends of moderate curvature, the first method is more computationally efficient. Therefore,
in this study, the first procedure is used for nvers of which:

- the depth is small compared with the width;
- the width is small compared with the radius of curvature;
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Fig. 3.6 Definition sketch of the three-dimensional flow field

- the horizontal length scale of the bottom variation is of the order of magnitude of the
width;

- the flow is mainly friction controlled, although inertial forces can also be significant:
- the longitudinal component of the velocity dominates the other velocity components;

- the Froude number is small.

3.3-1 Governing differential equations of the flow model

Without yet relating the horizontal coordinates to the channel geometry, the equatios
of continuity for steady incompressible flow reads

1 alu, . 1) 1 (. 1) .9y,

TN R M A T e ¥ en
using Egns. (3.2), (3.3) and (3.4), Eqn. (3.7) can be written as
al/ u d
ﬂ - E - _-: - " & _E = ﬂ [3.5!

The momentum equations can be written as
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3U AU, U, aU, U .y} :
U, 8u. 1, au v, R I el SR -0 (3.9)
s dn az R R o as !
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- - Rl M o N o {'3._1]]
a5 dn dz p dz : 8
in which
P = pressure

p = mass density of the fluid

g = acceleration due to gravity
U,,U,, U, = velocity components in s-, n- and z- directions respectively
F,F..F, = friction terms in s-, n- and z- directions respectively

Here we neglect wall effects and assume a scalar eddy viscosity coefficient together
with the assumption that O | (W/R) |? can be omitted in natural rivers on the basis that the
depth-to-radius ratio (h/R) is small. *Radius’ means here the radius of curvature of the river.
In this case, the friction terms F, and F, can be approximated by

1 dr
i R (3.12)
] s Bz
Foal 2 (.13
p dg

where 7, and r,, are shear stresses in the s-z plane and n-z plane respectively, which
hereafier will be called 7, and r,. Actually, the above-mentioned approximations consist of
a shallow water approximation in which all lateral exchange of momentum due to friction in
the fluid can be neglected.

The friction terms can be expressed in terms of velocities in their respective directions

by introducing the Reynold's stress concept and the Prandtl mixing length hypothesis,
Therefore the following equations can be wrilien,
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" au (3.14)
T
Fi az
T o4 90, (3.15)
P dz
A g VUi +Uy+U; O T (3.16)
dz dz

in which A is the turbulent coefficient of viscosity or the eddy-viscosity coefficient and L is
the mixing length, which is a function of z. When the viscosity of water is concerned, the
applied formulation implies two assumptions: the first is that the laminar sub-layer is much
smaller than fully developed boundary layer, which is considered as the prevailing condition,
while the other is that the eddy viscosity is assumed isotropic,

The solution of the mathematical model is facilitated by introducing the rigid lid
approximation for the water-surface boundary condition. The rigid lid approximation means
that the water surface is considered as a rigid, impermeable and shear-stress-free plate with
only normal stresses (pressures). This also means that an average water surface elevation
(i.e. the elevation of the rigid lid) is used instead of the local water surface elevation. The
error introduced by this approximation is justified in the case when the Froude number and
the depth-to-radius ratio (h/R) are small, Further, Rozovskii (1957) simplified the equation
of motion in the z-direction to

1 arP
+ oo =) 3
£ =i (3.1T

which provides a hydrostatic pressure. An error will appear close to the side walls which will
be of the order of magnitude (h/R). In the central regions of the flow, the error is much
smaller. The pressure at any local point in the vertical can be written by integration of this
equation, assuming z = O at the channel bed and applying the rigid lid approximation, Thus,

P=F +pgh-2) (3.18)

where P, is the pressure at the rigid lid and (h-z) is the position of any local point measured
from the rigid lid.

Finally Eqns. (3.9) and (3.10) can be written in terms of the simplified Egns. (3.10)
through (3.18) as follow:

50



DEVELOPMENT OF A BED TOPOGRAPHY MODEL

U} aU. U AU U, . ur- Uz
ds dan dz "R R,

8P_3 9% @9
-

1
p 95 oz @

U, U, AU} U U, U U, U-UP 1 a3 U 30
ds an dz R, R, »on & %

The flow computation follows the governing equations presented in this section.

3.3-1 The vertical distribution of the Mow

The vertical distribution of the flow velocities can be obtained by the technique of
asymptotic expansion. In brief, the zero-order approximation of the longitudinal-flow velocity
is obtained from Eqn. (3.19) assuming that U, and U, are equal to zero and 3U/ds = 0.
Then the transverse velocity is computed from Egn. (2.20) with the zero-order longitudinal
velocity inserted and terms of the order of magnitude (h/R)* are neglected. These terms are
U, dU/an and 1, 3U,/3z. The vertical flow velocity is obtained directly from Egn. (3.8).

After this a first order approximation of the longitudinal flow velocity can be obtained
by introducing the (first-order) secondary flow velocities into Eqn. (3.19). This was done by
De Vriend (1981a) and De Vriend & Struiksma (1983). They showed that the form of the
first-order solution only differs a little from the zero-order solution. In order to solve the
flow model, a choice of the mixing length is important, as the mixing length is used in
defining the eddy viscosity coefficient, as in Egn. (3.16). Three different mixing length
models are applied here, viz:

Le=xzylz h (3.21)
L = g gi-im ﬁ h (3.22)
L=2k(~1Z) {1z h (3-23)

where & is the Von Kirman constant, and m is a factor depending on the bed roughness. In
rectilinear, uniform flow, the mixing length given by Eqn. (3.21) results in the well known
logarithmic velocity profiles, Eqn. (3.22) results in a power profile and Eqn. (3.23) in the
Von Karman velocity profile (cf. Jansen, 1979). The logarithmic velocity profile and the
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e

power profile are (he two most frequently used velacity profiles for river flows. Verification
of the mixing length models are mostly based on uniform shear flow; it is known that the
models predict nearly the same velocity distribution (cf. Olesen, 1987). Consequently, ng
significant distinction can be made between these, However, it is physically reasonable i
assume that the mixing length close to the bottom grows linear with the distance to the
bottom (Olesen, 1987). This implies that the most realistic shear stress and flow distribution
can be denived from Egns. (3.21) and (3.23). Thus, for the sake of balancing reasonablness
and simplicity, Eqns. (3.21), (3.23) and a power profile, i.e. Egn. (3.22), are useq
respectively in the following sections.

3.3-3 The longitudinal Mow velocity

The longitudinal flow velocity is the major component of the three-dimensional flow
velocity field. Its behaviour is described by the longitudinal momentum equation, Egn. (3.9),
which later becomes Eqn. (3.19). The right hand side of the Eqn. (3.19) is the eddy viscosity
term. The zero-order version of Egn. (3.9) reads as follows:

] L2 dfu g (3.24)
3 {{H} iW}J T

where £ is the dimensionless depth and Fu, is the *shape function’ of the longitudinal flow
velocity, or mathematically Zu, = UJU, ., where U, is the depth-averaged longitudinal
flow velocity, and C is the Chézy roughness coefficient. The boundary conditions for this
differential equation are vanishing shear stress at the water surface and no slip at the border
plane between the laminar sub-layer and the turbulent boundary layer (ie. at %,), where 3, =
el-t-=cil® 3 = Qand , = e " =¥ for Egns. (3.21), (3.22) and (3.23) in that order.
Then the shape of the longitudinal flow velocity reads:

C

f &
Fu, = l [I Ve ag] _E.ag (3.2

The velocity profiles can be obtained by inserting the models for the mixing length,
Eqns. (3.21), (3.22) and (3.23), giving in the same order, and after integration,

ﬂu‘tuln?éﬂl*cr{Hlnf} (3.26)

V]

Fu, = a m ™ (3.27)
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Pu, = o l“-'i-;: st wipdti-e’ (3.28)

in which o [= g / («C)] is a dimensionless roughness coefficient. In Egn. (3.26), m is a
coefficient already introduced in 3.2-2, the depth-averaged value of which can be derived by
integrating Eqn. (3.26). Therefore

o m = I fj_zgl]
m

According to its definition, the depth-averaged value of u, is equal to unity. This
equation is given by Jansen (1979). There are different definitions of m, such as those given
by Zimmermann & Kennedy (1978) and Nunner (1956). These differences come from the
different definitions of the mixing length. Nevertheless, these different values of m allow one
and the same definition of Fu,.

The zero-order viscosity coefficient for the logarithmic model, the power model and
Von Karman models can be obtained by substituting the pairs of Egns. (3.21){3.25),
{3.22)(3.26) and (3.23)(3.27) into Eqn(3.16). The eddy viscosity distributions are as follow:

A= af(l-Hhiu (3.30)

41
A=daf ™ (1-2hi (.31)
A=2/a(l-1-Z)Y(1-H hu (3.32)

The profiles are shown in Fig. (3.7).
3.3-4 The transverse flow velocity

The transverse flow velocity is an important feature of the alluvial river bend flow,
which is an essential component in the formation of a flow pattern, being three-dimensional
in the river bends. Moreover, this three-dimensional flow pattern varies from section to
section depending on the location of the cross-section along the reach. If and when the bend
is continuous and long enough, the fully-developed bend flow is established after some
distance from the entrance of the bend. A fully-developed bend flow is a flow in which the
mean flow characteristics do not change from section to section along the main flow
direction. It means the derivatives of the flow parameters along the main flow direction are
equal to zero. Before this (fully-developed bed topography) region, the developing bend flow
occurs. If the bend ends after a certain length, the transitional flow which will adjust to the
bed topography of the following reach occurs just before and just after the exit of the bend.
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Fig. 3.7 Vertical distribution of eddy viscosity, flow velocity and flow direction
(from Olesen, 1987).

Therefore when we consider flows in the river bends, there are two types of bed topography,
namely fully-developed bed topography and the developing bed topography. In terms of
mathematical expression, the fully-developed bed topography can be expressed by zero-order
solution and the latter can be expressed by the first-order solution.

Arcund the entrance of the bend the transverse water surface slope will grow rapidly
from zero until its final value in the bend. Therefore, along the convex bank the longitudinal
waler surface slope will increase rapidly and cause an acceleration of the flow there. Along
the concave bank the slope decreases and the flow decelerates. In turn this ensures a gradual
growth of the streamline curvature around the entrance. The secondary flow will also grow
gradually and it will establish a transverse bed slope (see section 3.3). The main flow will
adapl 1o the changing bed topography and to the influence of secondary flow convection.
Consequently the main flow velocity will increase along the concave bank. Moreover, main
flow will also adapt the new friction condition according to the new flow field. On the other
hand due to the inertia of the main flow the adaptation of increasing main flow velocity along
the concave bank will take place gradually. In other words changing of the flow distribution
will lag the changing of the bed topography. Therefore the magnitude and process of
adaptation are discussed as following. The transverse flow velocity is expressed by Eqgn.
(3.10), the transverse flow momentum equation. The total strength of the transverse velocitly
in river bends is the combination of transverse flow velocity due to flow curvature (secondary
flow) and transverse flow velocity due 1o the redistribution of the longitudinal flow. Hence.
mathematically,
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U, = U, Fu, i, $u, (3.33)

L]

in which U, = transverse velocity
Fu, = shape of the longitudinal flow velocity
Fu, = shape of the secondary flow velocity
i, = the secondary flow intensity which is given as follows:
s e
I, =u ﬁ{ {'3.343
( of. De Vriend, 1981a )

We recall Eqn. (2.1) from section 2.4-1.1, which gives the strength of the secondary
flow, S, as derived by Shikry, 1950, and we now compare this with the more
comprehensive Eqn.(3.34). The relationship can be written as follows:

mnﬁ.h 35)
sre 2 d 3

The strength of the secondary flow in Eqn.(2.1) is, in tum, the square of the tangent
of the angle a, ., in which o, ., is the angle of the mean flow velocity deviation from the x2-
plane. On the other hand, this is the depth-averaged value of the skew angle, which can be
taken as the deviation angle between the local point velocity and the depth-averaged velocity,
as illustrated in Fig. (3.8).
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Ilustration of skew angle as the strength of the secondary flow

Thus over the whole #u_, the shape of the secondary flow velocity is the theoretical
representation of the measured skew angles in Fig. 3.8 and i, is the secondary flow intensity
which we utilized in the computation. The complete secondary flow that is associated with
the transverse velocity is schematised in Fig.3.9.
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Fig. 3.9 Secondary circulation patterns and a definition sketch of developed bend
fow

The inertia of the secondary flow has been investigated analytically (using a similarity
hypothesis) by among others Rozovskii (1957) and Nouh & Townsend (1979). Numerical
investigations of this have been carried out by De Vrend (1981a), Booij & Kalkwijk (1982)
and Kalkwijk & Booij (1986). A widely applied procedure to determine the magnitude of the
secondary flow is 1o solve the momentum eguation in the n-direction, disregarding all lateral
friction terms and all inertia terms except the centrifugal one. Introducing the eddy viscosity
concept for the vertical friction terms, this equation reads the same as eqn.(3.37).

When the secondary flow is considered in the numerical models, it is not sufficient
when only the strength of it is taken into account but it is also necessary to take account of
the way it adapts to the main flow, In regions of changing curvature, the secondary flow will
adapt gradually, The function describing the adaptation of the secondary flow can be
considered in its simplest form : a straight river, at s = (), entering a long bend with constant

curvature. The following approximations can be used to characterise the properties of an
‘adaptation length'.

U, = I, *u, gls) (2(0) =0, glee) = 1) (3.36)
ap _ AP, aP, 44

In Egn, (3.36), U, = transverse velocily component due to secondary flow, i, and
ZFu, are as mentioned before and g(s) is & function describing the adaptation of the secondary
flow. In Egn. (3.37) the transverse water surface slope is split up into a part (P,) balancing
the centrifugal force and a pant (Py) generated by the bed shear stress. Conceptually, g(s)
provides a function form but not a definite quantity. Consequently the appropriateness of a
similarity hypothesis is investigated and it is concluded by Olesen, 1987 that *..an analyrical
approach based on similarity is not likely to provide an accurate description of the gradual
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adapration of the secondary flow”. Therefore the way of numerical investigations initiases
of De Vriend (1982), Booij er al. (1983) and Kalkwijk et al, (1986) seems t0 be the bes
approach.

According to the numerical results, the process of adaptation cannot be characiensed
by one length scale only. The process involves at least two length scales; namely the
adaptation length of the secondary flow and the length scale associated with the bed shear
stress due to the secondary flow. However, the latter type of characteristic length scaie i
obtained from the numerical computations of De Vriend (1982), Booij et al. (1983), ang
Kalkwijk and Booij (1986). Later, Olesen (1987) proposed a purely exponential adapeation
with.a length scale of A, = 0.6 h C /Vg, as a means of representing the influence of the bed
shear stress. The functional form reads {1-exp (-s/A.)}. in which A is the adaptation length
of the secondary flow. The results of Booij et al. {1983) and Kalkwijk and Booij (1986) arz
quite similar, Therefore the result of Booij et al. and Olesen (1987) are depicted in Fig. 3.3
as two different adaptation lengths of the transverse bed shear stress after a sudden change
in the main flow curvature. The applicability of the purely exponential function proposed In
Olesen (1987) gives sufficiently accurate Fesuies compared with Booij et al. (1583) and
therefore an adaptation length of "0.6 hC/¥g" is use in the mathematical model.

Lagend:
—  Booij eral. (1962)
————  Olesea (1957) { function = 1 - exp (o), Ay = 0.6 Vg )

Fig. 3.10 Adaptation of the transverse bed shear stress after a sudden change in
main flow curvature (from Olesen, 1987).

Since the shape of the secondary flow velocity is a function, Hu,, of the transverse
flow velocity itself (i.e. eqn.(3.33)), it is necessary to solve the depth-averaged value of U,
from the truncated (first-order) version of the transverse momentum equation by integrating
over the depth. The truncated momentum equation is
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1

1 apP {r; _d ) (3.38)
p an K oz dz
and the appropriate dimensionless form is as follows:
L
i .__L ﬁ i—i .Efuf = (3.39)
di | hiikle 02 K

in which Z is still the dimensionless depth and ¢ is a constant (independent of #) which is
proportional to the transverse water surface slope. The different solutions of the egn. (3,39)
can be obtained by integrating it using different shape functions of the longitudinal velocity
profile, Fu, and the different eddy viscosity models (i.e. definition of A). Olesen, 1987 used
the boundary conditions of vanishing velocity and shear stress at 3 = ¥, and 2 = 1
respectively, in which 2 = ¥, is used instead of £ = 0, thus automatically disregarding the
‘tail’ of the logarithm. This makes an analytical solution of the logarithmic and the Von
Karman model laborious, but the numerical approach becomes much easier and safer when
Fu, - oo and 3Fu,/d% - oo at the bottom. For the determination of the right hand side (i.e.

the transverse water surface slope), the auxiliary condition,
1

L.EE'H_ =0 (3.40)

is used. It implies that there is no net flow in the transverse direction.

Let us take an example, one of the possible solutions of eqn. (3.39) can be as follows
in case of the power model. The dimensionless vertical shear stress variation can be obtained
by integrating through egn. (3.39), combined with eqn. (3.27)and v, = 0at % = 1, viz:

A 8w, meny?
rr = =
YR U K 9 mime2)

!
[ 1- 270 4 ¢ (£=1) ) (3.41)

in which ¢ is an integration constant which still has to be determined (Olesen, 1987). x and
a are already mentioned in 3.3-3. From egns. (3.40) and (3.31), the horizontal secondary
flow component can be obtained by an integration, in which it has been already assumed that
% is small. Then the equation reads as follows:

1 mim+1) . f"’“_l":—f
Tho® L

: cf%’] di (3:42)

Thus egn. (3.42) is the solution of egn. (3.39) when main flow distribution is
represented by the power model.
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If the logarithmic tail is not omitted, the analytical solution of Eqn. (3.39) reads (cf,
Rozovskil, 1957 and De Vriend, 1981a):

Lu, = ;15 [ 2F,(2) + aFy® - 20-0)%u, | (3.43)
in which
¢ In P
F, = L r:_; dZ (e = 1,2) (3.44)

As mentioned earlier, transverse velocity profile function, #u, or the solution of the
eqn. (3.39) can be as many as possible combinations of main flow velocity profile function,
ZFu, models and A, eddy viscosity models. However there are no significant differences
between the flow profiles of the different mixing-length models. In Fig. (3.7) the shapes of
the secondary flow are also depicted. Finally, by egn.(3.33) through eqn.(3.44), the total
strength of the transverse velocity in river bends, which is the combination of transverse flow
velocity due to flow curvature (secondary flow) and transverse flow wvelocity due 1o
redistribution of the longitudinal flow, is obtained. The consequences of the formation of this

transverse velocity as bed shear stresses and their directions are discussed in the following
section.

3.3-5 Bed shear stresses and directions

Bection A - A

Fig. 3.11 Definition sketch

As the result of the helical motion in bends, the bed shear stress forms an angle with
the mean flow direction; see Fig. (3.11). The model for the bed shear stress direction in @
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curved flow plays a vital role in the bed topography model for river bends. The bed shear
stresses in the s and n directions, still called r, and r, respectively, and their magnitudes can
be estimated by Eqnls. (3.14), (3.15) and (3.16) together with mixing- length model results.
The direction angle 15 known as &, given by {tan (8) = r, / 7.}.

According to Engelund, (1974),

U+ U

ans, = " (3.45)

£

in whic:ll
l.:]- = velocity component along the bed (transverse direction)
U, = velocity component along the bed (secondary flow)
U, = longitudinal flow velocity

and

{0 = -7 .;:_l U, f, (3.46)

in which
h = water depth
R, = s-line curvature
!'_I. = mean flow velocity in the longitudinal direction
f, = a function to take account of the influence of the side walls, which can be

calculated from the experimental results. The logarithmic model of Rozovskii (1957) yields
a bed shear stress direction in river bends as follows:

tana‘=—.ﬁ'.g. (347

L]
in which # = j&(c) is a coefficient which weighs the influence of the spiral motion, depending
on the eddy viscosity model applied. In the case of a logarithmic vertical velocity profile:

8 = % (1-a) (3.48)

The power model of van Bendegom (1947) yields

2 mt

e T 3.4
B (m+2) (m+3) e
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e

in which m is a coefficient. As a consequence, the direction of the bed shear stress in cas
of a continuously-varying curvature can be caleulated by

\ d tand,

W

. i (3.50)
tand, ¢} =

r

in which §, is the angle between the stream-line and the bed shear stress principal direction,
5 is the distance along the stream-line and A, is an adaptation length for the secondary flow
intensity see section (3.3-4); where §, R, and h have the same definitions as given earlier,
The quantity § of Rozovskii may vary between 10 to 12. However Engelund obtained a value
of 7 for this coefficient in egn. (3.46). Engelund applied a parabolic distribution of main flow
velocity and a finite slip velocity near the bed whilst Rozovskii assumed a logarithmic
distribution of the main flow velocity, Engelund’s distribution appears to be more accurat
for the greater part of the flow but is less accurate close to the bed. In 1981, Knudsen,
calculated this coefficient using Deigaard's (1980) eddy viscosity distribution (ie. the velocity
distribution in the main flow direction consisting of a logarithmic distribution in the lower
20% of the depth and a parabolic distribution in the remaining part). This combined velocity
distribution describes the condition better than a purely logarithmic velocity distribution or

a purely parabolic distribution. The resulting 8 value is approximately constant, varying
between 10 to 11,

Moreover the quantity 8 is a function of the Chézy coefficient, as given by the four
different models, as shown in Fig. (3.11), and is to be used in the model for the direction
of the bed shear stress. Olesen, (1987; see Fig. 3.11) also pointed out that the differences
concerning bed shear stress direction between the models are surprisingly large in view of
the close similarity of the vertical distribution of eddy viscosity and transverse as well 2

longitudinal flow velocities. Consequently, the bed shear stress direction is extremely
sensitive to the mixing length model applied.
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Fig. 3.12

The coefficient # in the model for the direction of the bed shear stress
in a curved flow {from Olesen, 1987)

3.3-6 The vertical Now velocity

The present model is established as a two-dimensional depth-integrated model.

Therefore the nature of the vertical flow velocity is only briefly outlined here. The vertical
secondary flow velocity component is written as follows:

[

d, i
U=__[':E;‘+E}E“'dz (3.51)

F

The ‘shape’ of the vertical velocity, Hu,, is given by

¥

Fu, = [Eu_ dz (3.52)

which can be seen in Fig. 3.6. The notations are as mentioned earlier and from now on we
shall simply write z again in place of £.
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3.3-7 The stream-line curvature

The stream line curvature is introduced in order to improve the computation fy
developing flow regions. If the flow is not fully developed (i.e. fully developed means thy
all derivatives in s-direction other than dP/ds equal to zero ), the stream lines will eithg
diverge or converge, so developing flow cannot be described using a natural curvilinear ¢o.
ordinate system without curvature of the normal axis, This type of flow oceurs at entrance
and exits of bends and at other places where larger longitudinal gradients in the transvers
depth-averaged velocity arise. If the streamline curvature is approximated by the logy
curvature of the channel instead of being calculated from the flow field, it implies that the
divergence or convergence of the streamline curvature is neglected and this causes an erro
in the transverse water surface configuration and the prediction of the secondary flow bass

on the main flow field. Therefore the path of the stream line is calculated and s introduced
using an iterative method.

The exact mathematical expression for the streamline curvature is {De Vriend, 1978

I = =0U, —aU, U - _aU, -aU, U,
ﬁ: o ———"_Fir;-[u‘[ﬂ * R "U"EU‘ a5 +Ul dan " R_.. }] {-3,53}

in which R, is the radius of curvature of the streamline and the rest are as mentioned earlier.
However, regarding the derivation of the longitudinal and transverse direction momentum
equations, it does not make sense to apply such an extensive expression (Olesen, 1982).
Applying the same rule for the truncation of the above expression as for the equations of
momentum, a simplified expression for the streamline curvature reads

1 _ 1 1 8,
EEE—E (3.54)

3.4  The depth-averaged flow model

For small Froude numbers the water surface can be considered as if it were a rigid
frictionless plate at z = (), At the fixed boundaries the usual conditions of impermeability and
no-slip apply (Kalkwijk, et al., 1980). For the shallow flow which occurs in Jarge-scale
variations of the bed level with gently sloping banks, the water depth decreases gradually 10
zero at the banks. Therefore the shear stress in the vertical planes will be ne gligible 2
compared with the shear stress (friction) in the horizontal planes. The pressure can be
assumed 1o be hydrostatic, Integrating Eqns. (3.8) through (3.10) from the bottom at z = -}
(s,n) to the surface at z = 0 yields
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U, AU, KU, KO, (3.55)
s R, an R
U, U T, L hUT, kWU hoP T (3.56)
ds dn R R p én p

a7

b TP WP (3.57)
dn P

in which over-bars denote depth-averaging ; r, and r, are s- and n- direction components of
the bed shear stress and P = (otal pressure, = p + pgz.

In the region of developing flow, the transverse velocity averaged over the depth may
differ from zero. The transverse flow velocity expressed by eqn. (3.33) is solved together
with egns. (3.56) and (3.57). For the sake of simplicity, the stream-lines are assumed to
follow the co-ordinate system in the mathematical model (i.e. U, ., / U, .., i5 assumed small,
which almost always applies in alluvial channels) and later it is introduced gradually,
numerically. In addition, the water-depth to radius-of-curvature ratio is assumed small. These
assumptions lead to the conclusion that the quadratic terms of the transverse flow velocity
can be neglected (i.e. 1P . i*, and U,,,.i, are very small) and the secondary flow
components in the longitudinal direction can be omitted. Thus eqns. (3.56) and (3.57) can
be elaborated into (see also Kalkwijk et al. 1980) :

1P, [—EU.,,-W.*U.LU,]
= T us I T a - R
h Ve T (3.58)
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-y _
-I-.rip_l+k aiﬂ_ﬂ *Eaultlh*_E:D {3-59]
pan ™ | 7As R W s h
in which
I
k.. = 1 (Fu ) dz (3.60)
1
k, = l Fu, Fu_ dz (3.61)

In egn. (3.59), the second order terms have been neglected and in eqn. (3.33) the
vertical velocity component has been eliminated by partial integration and application of the
continuity equation (3.8) in order to facilitate the depth integration.
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Fig. 3.13 Main flow velocity distribution coefficient Vs Chézy coefficient (from
Olesen, 1987).
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Fig. 3.14 Secondary flow velocity distribution coefficient or secondary flow
convection factor Vs Chézy coefficient (from Olesen, 1987).

k,, and k, are velocity distribution coefficients. They have been obtained with the
numerical model for the three different mixing length models (as shown in Figs. 3.12 and
3.13, from Olesen, 1987) and in case of the power model also analytically. In case of the
logarithmic model with the logarithmic tail included, the variation of k_ has been obtained
from Kalkwijk et al. (1980) and that of k,, by direct integration of eqn. (3.26), viz:

ko= 1+ a? (3.62)

According to Olesen (1987), setting k,, = 1 will be sufficiently accurate in most
cases, The velocity distribution coefficient k,,, which is related to the convection of
momentum by the secondary flow, is very sensitive to the logarithmic tail in the case of a
rough bed. The k,, values vary considerably with the mixing-length model applied. The
secondary flow convection term in the depth-integrated transverse momentum equation is
very small compared 1o the dominant inertia term (U,*/R), and as a consequence this may be
disregarded.

The depth-averaged equations for bed shear stress in the s- and n- directions are as
follows:-

&7
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T, =(pg U U +UT )/ C .49

rq i { o S Uﬁ fU:"‘U: }.Ill Ct {3-54}

in which C is the Chézy coefficient. According to the egns. (3.63) and (3.64), the direction
of the bed shear stress coincides with the direction of the depth-averaged velocity, which js
only true for non-curved flow. However, it is assumed that, for curved flow, the influencs
of this deviation on the main flow is negligible even though it is accepted that the influence
of this deviation on the sediment motion is not negligible. Thereafter, the bed shear stres;
(s- and n- components) and the direction can be approximated by

7, = (0 g U, |UT; ) e

T, =9 "51" 74 (U, + U, tand) (3.66)

tan & =

ch:{;::.
:
3

in which tan §, must be obtained from egn.{3.50).

3.5 The integration procedure of the flow model

This efficient integration procedure is in principle based on the method suggested by
Kalkwijk & de Vriend (1980). In their model, however, the streamline curvature is
approximated by the local curvature of the coordinate lines, resulting in a model with 3
purely hyperbolic mathematical character. This permits a straight-forward marching
integration procedure with an implicit finite difference scheme, but Kalkwijk & de Vriend
suggested an iterative procedure with an explicit scheme, which appears to be far mor
economical. The basic principle in this solution procedure is that terms containing b
transverse main velocity are supposed to be known. With a first guess for the transverse flo
velocity (e.g. U, .. = 0), the longitudinal flow velocity can be obtained from egns, (3.9) and
(3.10) with a constant discharge as boundary condition. Next, the continuity eqn. (3.8) &
be applied to oblain an improved estimate for the transverse flow velocity, after which U,
can be recomputed with this U, value and as many iterations can be made as accurs)
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requires. In this step, the continuity equation can be applied after each ray is or after
sweeping through the whole field. A ray is defined as a strip across the river cross-section
which has the unit width As. This integration procedure appears to be unconditionally stable.

Later Olesen (1982 b) extended this model with an improved approximation for the
streamlinge curvature, whereby egn, (3.54) and is introduced gradually, by iterations, as
follows: -

-l

au
Ly wn il

l
L4 A

1 Loy I (3.68)
3 (1-11) {'ﬁ';}

In which p represents the number of iterations and 0 is a relaxation coefficient. The
relaxation coefficient is defined as that necessary to maintain stability and is explained below.
In the integration procedure, the same basic principle is applied, but now also the streamline
curvature is improved in each iteration step. In fact the procedure is very attractive not only
for the improvement of the estimate of U, ., in each iteration step, but also for updating the
streamline curvature egn. (3.68). An obvious first guess for the streamline curvature, which
corresponds to U, ,.,= 0, is the curvature of the longitudinal coordinate line, (i.e. R,). After
introducing the stream line curvature, the characteristic direction of the set of partial
differential equations has acquired a mixed hyperbolic- elliptic character. The change of
character, as a consequence of the introduction of the streamline curvature, implies that the
solution in an arbitrary point of the considered area changes from dependence on the
upstream conditions only into dependence on both upstream and downstream conditions, such
as an extra boundary condition at the outflow section, which can be a prescribed streamline
curvature. Since the mixed hyperbolic-elliptic character does not allow a forward marching
procedure, it becomes necessary 1o sweep through the whole field in each iteration step. In
this case, numerical stability is assured by using an underrelaxation, viz only a certain part
of the new calculated streamline curvature is taken into account in the following iteration
step. For instance, the sireamling curvature applied in iteration number p is given by eqn.
(3.68) in which 1 is a relaxation coefficient. A relaxation coefficient which ensures stability
15 observed as

M 2
1 =8 {WJ;‘} (3.69)

Experience with the present model has shown that the most efficient value is given
approximately by

ag, ? Ad, ?
=) 3 B0 (3.70)

Q=04
i SF: | {wmr WIE,

while for simplicity, the range of value { 1/6 = @ < 2/9 } is experienced to be a safe one.
In this equation, (3.70) 48, is the angle subtend to the arc length of the segment, As,
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Fig. 3.15

Computational grid and finite difference approximation

A staggered computational grid is applied as shown in Fig. (3.15). This grid allows
a discretization of the equations, with central differences and relatively shor space step
which is not generating oscillations, Egns. (3.9) and (3.10) are transformed in such 2 W&
that flux instead of velocities are reformulated. That is, (p = U, h) and (q = U,.h) are used
instead of U, and U, Moreover the function (f = p*/h) is used in the integration, which B
the advantage that non-linear terms like (U and (U -

: become linear in integrati®®
Therefore, the final version of the momentum equations before the discretization i
following:
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Referring to Fig. (3.15), it is seen that equation (3.71) is discretized into (k) and
(k+1) points and eqn. (3.72) is discretized into (j-1) and (j) points. The four discretized
equations centred at k, k+1, j-1, j are subtracted in the way of {k-(k+1)} - {G-1)-j} and the
pressure lerm is eliminated. The pressure can also be eliminated directly from equations
(3.71) and (3.72) by cross differentiation but the order of differentiation is important and the
elaboration of the corresponding differences is somewhat more complicated. Therefore, after
testing both methods, the first has been selected in preference. Thus, after the pressure term
is eliminated, the resultant equation reads in the form of a function of f as follows:

Unknown = A, + Assumprion = A, + A, = Known

Far = At S = A 2 A= P Dagni kb (3.73)
+ other parameters

With a known inflow distribution, this equation is solved explicitly and fi;,, is
calculated; from this and the assumed value £, ., and p;, are recalculated by the equation
f = p'/h as already mentioned earlier. In fact, p is previously set as a function of the
longitudinal velocity, p = U,.h; therefore U, ;. and U, ;, are then recalculated. After having
completed this procedure from the k=1 point to the k=Kkk point which is the point at the
other side of the river, the j* ray of the computational domain or, in physical sense, the
section of the considered river-reach longitudinal flow velocity at each and every point over
the cross-section is calculated, After that the integral condition of continuity equation (3.74)
is used as an auxiliary condition to check the computed longitudinal velocity values.

L hU, dn = Q (3.74)
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in which W is the width and Q is the total discharge. In this way, Eqn. {3.73) is iterated by
improving the assumed value until eqn. (3.74) is sufficiently accurately fulfilled. Hence yh,
I{'Il-'lgllh.]diﬂﬂ.l flow velocilies of the entire river reach are cal[‘.u!atﬂd. Until this point, “-IE
iransverse flow velocity component has been assumed to be zero (U, ., =0). Therefore frop,
there on the term which concerned with the transverse flow velocity U, and U, itself ap,
calculated and put back into the eqns. ¢3.71) and (3.72) and recalculated all over again jj
order to get the true value of U,, p and f under the condition of the existence of the U,
component and q. The calculation is repeated as before and it is completed when Eqn.(3.74)
is sufficiently accurately fulfilled after the eqn. (3.73) is iterated by all necessary componeni
of p, q and { which have been improved. Thus the complete two- dimensional flow field of
the entite nver reach is caleulated,

3.6  Verification of the Now model

The flow model is tested with the experimental results of a moderately-curved flume
with mildly sloping banks. The flume is a large curved flume consisting of a 38 m long
straight reach, with a symmetric parabolic cross-section, followed by a 90" bend with 3
radius of curvature of 50 m in which the deepest point of the bed gradually shifts from the
middle of the flume towards the outer banks, Therefore the bed-topography of the flume iy
a fixed uneven bed, as if it were a typical equilibrium bed-topography of a classical river
bend. This type of experiment is an intermediate step before going into the morphological
changes in the movable bed models. Therefore it also is a sensible check point for the flow
model which has been developed so far in this chapter. A complete description and results
of the experiments are given by De Vriend and Koch (1978). The plan-form, bed topography
and dimensions of the flume (DHL flume; which is from Delft Hydraulics) are shown in Fig.
3.16, in which dimensions are in meters.

Measurements of the flow distribution and the water surface level performed with a
discharge of 0.463 m%/s are selected to be used in the verification. The Chézy coefficient in
this experiment was about 60 m'®/s. The curved part of the flume had a longitudinal slope
of about 107 in order to compensate for friction losses; however, back-water effects were
noticed in the measured water level data, so only the transverse distribution of the water
surface is suitable for comparison with the theoretical results. The flow distributions are
compared with the measured data in Fig. 3.17. Figure 3.17 shows that the flow distribution
simulated by the numerical model agrees with the experimental results except for the region
near the concave bank. Therefore the simulation results are satisfactory on the ground of the
following explanation. Since the difference between the experimental data and the
computational results seem systematic, it is concluded that the model has experienced the
phenomena described by Kalkwijk er al.(1980) and Olesen(1987). They suggested that the
possible causes of this type of discrepancy could be that the magnitude of the secondary flow
s underestimated by the theory, or the omission of the effect due to the net outwands
transport of momentum by the horizontal component of the secondary flow or, finally, the
secondary flow intensity close to the concave bank cannot be described by local parameters
only, due to a rather steep transverse slope of about (1:3). In this case, the difference which
15 found here is inevitable unless the flow model is reformulated as a complete three-
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dimensional model, which has already been discussed in section 3.3, and so it was decided
here to accept this discrepancy and carry on to the bed-topography computation,

T

=

l-'l'lllll lﬂtﬂh Erawe H-ﬂ.lln

e DS e S Y |

I.hmlql

b s

18

e
L]

Fig. 3.16 Planform and bed topography of the DHL-flume (from Olesen, 1987)
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Fig. 3.17 Comparison of measured and computed flow velocities in the DHL-
Mume. { The present model’s calculated values)
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3.7 Bed-topography computation

Alluvial rivers possess channels that arc self-formed by the flow of water ang
sediment mixture. This fluid mixture also has to flow under the prevailing geometry of the
cross-section and the shape of the river bend together with other bed features. Cﬂﬂﬁﬂl'{&nﬂy
the presence of a circulating flow exerts an influence on the flow structures, the sedimen
transport capacity and the sediment distribution of a meandering river reach. _I'-_ causes 3
transverse transport of sediment and directly brings about the scour and deposition of the
matcnial of the river bed. In this way, the morphology of a bend is gradually formed. On the
other hand, the position of the main flow current and its variation, as determined by the
morphology of the bend, it is again the evolution of the secondary flow. Depending on the
strength of main flow and the secondary flow, the overall flow field has been changed ang
the other changes, such as the sediment transport capacity and the sediment distribution of
a meandering river, follow, Hence the new bed topography and its corresponding flow fielg
of the entire river reach develop together. The bed topography computation of the presey
study consists of above-mentioned steps. However, the intrinsic connection between the
longitudinal and transverse variation of a meandering river reach as well as the evolution of
the bed topography of a meandering river could only be revealed after the structures of the
longitudinal and secondary flows have been simulated. In this case, the flow computation iy
completad in the previous sections and the bed shear stresses, sediment transport rates and
the directions are computed hereafter including the bed slope and the transverse slope effects.
The computation of the sediment transport rates and the directions of the sediment transpon
is very important in order to simulate the bed-topography of the river bend. Both the
sediment transport rates and directions depend on the bed slopes in the two directions (ie. the
longitudinal and the transverse directions) and on the magnitude and the directions of the be¢
Shear SiTesscs.

3.9-1 Governing differential equations of the bed-topography model

The development of the bed-topography model follows a principal assumption th
disturbances of the flow travel at a2 much higher celerity than do disturbances of the bed. The
bed level computation is therefore divided into small steps in which the bed is kept fixed and
the flow considered as quasi-steady. At each time step a steady flow field is computed and
from this the sediment transport rate is calculated and the bed configuration at the followin
time level is computed using an iterative explicit finite difference approximation (i.e. th
replacement of implicit finite difference scheme) for the equation of continuity of the
sediment. The governing differential equations are the sediment continuity equation and tht
sediment motion equation as shown below in eqns. (3.75) and (3.77). In principle, any ¢
the equations available can be used to compute the sediment motion. In this study, however
the sediment motion equations are used selectively. The major components of the b
wpography model are sediment transpori rate and direction, bed shear stresses in magnitu¢
and direction, the roughness factor and the integration procedure.
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aZ
» 95, 95, 5 5 _, (3.75)
at @5 an R R,

where the components of the volumetric sediment transport (including pores, i.e. the bulk
transport) per unit length in the s- and n- directions are given by

5, =5 Cosy ; 8 =35, Siny (3.76)

in which
8, = ol effective volumetric sediment transport incleding pores, taken per unit
length, or the volumetric sediment transport flux.
¥ = sediment transport direction angle, i.e. the angle between the direction of the
sediment transport and the local stream line, which , however, only becomes

coincident with the s coordinate through the iteration procedure discussed
earlier in section 3.5.

S =mUt ;8= S -0) @.77)

W

or any transport equation, which is suitable; in the first part of eqn. (3.77), §, is the transport
rate, U is the mean flow velocity and m, and b are constants; in the second part of it, e, is
the void ratio, approximately 0.4, u is the ripple factor, which is the ratio of the
dimensionless shear stress due to skin friction and the total dimensionless bed shear stress,
and @, is the critical shear stress.

Again, S, can be calculated as follows:-

5, = 5, tany (3.78)

Using the rigid-lid approximation for the bed level, eqn. (3.75) becomes

ah _ a8, d{(S, any) z S, tany 8
FTR ] an B G 79)

Thus the bed topography computation is based on egns. (3.76), (3.77), (3.78) and
(3.79).
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3.7-2 Bed shear stress in the case of a mohile bed

The bed shear stress in mobile-bed-river-bends is controlled by the forces w‘r_xi::h arise
from topographically induced spatial acceleration in longitudinal and transverse directions
In fact there are two relationships to be considered and calculated hereafter. These are ,
relationship between the bed shear stress field and the channel topography and, a Il‘EIaIiEmship
between the bed shear stress field and the sediment transport field. The first relationship ca
be considered in three components. The curvature of the river, spalial vanation in beg
topography and the corresponding bed shear stress field. Actually, the key effect of the
downstream changes of the bed topography induced by the first two components on flow j;
modest on the magnitude of the boundary shear stress at any point on the river bed, by
rather on the direction of the bed shear stress vector. In a sequence of bends, the effects of
changing curvature alone on the growth and strength of secondary flow will cause a zone of
maximum bed shear stress to shift from near the upstream convex bank to the downstrean
concave bank. More over the effect of the variation in bed topography 15 added. Due 1o the
fact that the bed and bank materials are erodible and thus the boundary of the flow is mobile
bed shear stress magnitude and direction are time dependent. The magnitude of the bed shear
stress components in s- and n- directions are calculated by egns. (3.63) and (3.64).

31.7-3 Bed shear stress direction in an alluvial river bend

The bed shear stress direction in curved flow is described in sections 3.3-4 and 3.3
without going into the level of mobile bed condition, concerning alluvial bed roughnes
coefficient in the manner of time dependent factor. Most frequently the deviation angle for
the direction of flow and the direction of bed shear stress are described in two statements
The first is the direction of the bed shear stress deviates from the direction of the depih
averaged velocity. The second is the direction of the depth-averaged velocity deviates from
the local point velocity, However the magnitude of the deviation angle must be the same,
because bed shear stress follows the direction of local flow or in other words the directior
of the resultant velocity. It is illustrated in fig. 3.18. The deviation angle &, is related to th
secondary flow intensity and so as to the longitudinal and transverse flow velocities, which
are conditioned by the prevailing condition of the flow and alluvial bed roughness. In thi
section and the following section the roughness factor (in the form of Chézy coefficient) i
of the kind which varies with time, space and the property of bed material, Therefore be
shear stress direction here is closely related to the time dependent evolution process of ¥
bed configuration. This essence is put into practise when the numerical model is integrated
In the mathematical model the equations used are the same as in section 3.3-4 and 3.3-5.

3.7-4 Sediment transport capacity

The main interest in this section is concentrated on the prediction of the amount
sediment carried by the flow. The capacity mainly depends on the strength of the flow, *
on the supply from the upstream. It is reasonable to suppose that the transport capacity @
be considered from two aspects: from the point of view of magnitude (as scalar quantity) o
the point of view of the direction (as vector quantity). From the first point of views
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Fig. 3.18 Iltustration of bed shear stress direction angle

sediment transport capacity here is the total load of the alluvial river. From the second point
of view, it is supposed that the sediment transport capacity is the sum of the longitudinal
transport- which is determined by the direction of the flow at bottom and the bed slope in
the longitudinal direction- and the transverse direction transport- which is determined by the
direction of the flow at bottom and the bed slope in the transverse direction. Here both are
calculated so far as possible given the limitations of the knowledge of sediment transport in
this theoretical field. Yalin (1972) explains that given the number of varables involved,
transport relationships require a family of surfaces, or a family of families of curves, for
adequate graphical representation. He notes that this is strictly true only for the case of
uniform two-dimensional flow: Yalin avoids the case of non-uniform three-dimensional niver
flow as presumably too complex to be worth discussing in theoretical terms. However here
a start is made to calculate sediment transport rate in uniform shear flow, The available
sediment transport relationships in this type of flow mainly give a relation between a
sediment transport rate and the dimensionless excess shear stress. The excess shear stress
means the shear stress which can be used to move a sediment particle against its own contact
resistance. The shear stress which has to be used to get the threshold point of a sediment
particle is called the critical shear stress. Therefore the excess shear stress can be calculated
by subtracting the critical shear stress from the bed shear stress which is induced by the flow.
Each grain has its own capacity 1o resist being washed away by the flow. Therefore the
critical shear stress can never be the same anyway. However, a uniform grain size is
considered just to reduce the complexity, or to help in overcoming the difficulty. The
calculation of the sediment transport rate, and the bed shear stress is mostly represented in
a dimensionless form in terms of Shields parameter, defined as
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o (3.80)
s g AD

in which 7, is the bed shear stress in the dimensions given in Section 3.3-3, p is the densiyy
of the water (strictly speaking, the density of the fluid), g is the acceleration due to gravity
A is the specific gravity of the sediment (A= 1.65 for normal sand), and D is a characterist,
grain size. The characteristic grain size differs from model to model, such as Dy, Dy, D,
The cnuical shear stress is denoted by 8, and the value varies from about 0.033 to 0.0¢
There are numerous formulae to estimate the sediment transport rate but they mainly fy
under only two categories. The first category considers the sediment transport rate as thy
function of the strength of the flow. The second category considers the sediment transpon
raie as a function of the excess shear stress. The first relationship is in the form of

S =muU? (3.81)

in which §, is the transport rate, U is the mean flow velocity and m, and b are constants, The
second relationship is in the form of

S, = m (ub-0)" (3.82)

in which m and b are coefficients, p is the ripple factor, which is the ratio of the
dimensionless shear stress due to skin friction and the total dimensionless bed shear stress,
and 8, is the critical shear stress. Here it should be noted that the relevance of the twe
dimensional flow condition to the dimensionless bed shear stress can be expressed as follows

F | F

Tor ™ Tha [‘3_ 53:|
EpAD

These are the general expressions of the magnitude of the sediment transport rate
and the specific formulae which are used in the present study are discussed in section 3.7
4.1, 3.7-4.2, and 3.7-4.3. Moreover the selection of an appropriate sediment transpot
equation has puzzled at least a generation of river engineers and computer modellets
Although an attempt is made by Williams and Julien, (1989), to give an applicability ind®’
for sand transport equations they selected only four equations, which are those of Ackers &
White, (1973), Shen and Hung, (1971), Toffaleti, (1968) and Yang, (1973). In llﬁ
connection to this present study, Williams et al. attempt only contribute to stop choosi™
appropriate equation. Because the applicability of these four equations are very sensitive ¥
sediment size. The experiments were made under different flow condition and if there #
more variety of flow conditions are added, more scattered results are expected.
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1.74.1 Bed load

Bed load is the part of the sediment transport which is sliding, rolling, jumping or
saltating over the bed, Bed load transport generally occurs when the bed is experiencing
lower flow regime, such as a dune-, a ripple-, or a mixed-covered bed. A large amount of
literature is available elsewhere: therefore the detail will not be mentioned here. In this
study, the bed load is calculated from the bed load equations formulated by Mayer Peter and
Miiller, Engelund and Hansen and the power law. Engelund and Hansen formula is also used
frequently in this study to calculate the bed load transport. In principal, the Engelund and
Hansen formula was derived for a total load calculation but it is justified to use it as a bed
load formula when the Shields parameier is low. The power law is the principally-used
equation when the mathematical model was derived. However, any available and reasonably
reliable formulae for the bed-load equation can be used here.

3.7-4.2 Suspended load

Grains set in motion and dispersed into the flow are supported either by upward
diffusion of turbulence from the bed boundary (i.e., the weight of the grain is balanced by
the upward component of fluid momentum transferred to it) or by the vertical component of
forces arising from transfer of momenturn from grain to grain and grain to bed (or, in
principle at least, by rotational lift). The suspended load is the part of the sediment transport
which is carried in suspension under a particular flow and particle-interaction situation. The
suspended sediment transport capacity is closely related to the energy of the turbulent motion
availahle to keep particles in suspension. For the calculation of this suspended sediment load
the concentration fields have to be computed in the first place. There are many equations
available, from Einstein, (1950) to van Rijn (1981, 1984) and, in between, many others. In
the present study the suspended load is calculated using Diegaard’s (1980) model and the
concentration profile is also taken from Diegaard (1980). The suspended load calculation is
essential when the dune formation is simulated, In the bed topography model the suspended
load is often included, although not always. When this load is included, the wave length and
the damping of the point bar and pool configuration are significantly affected by the
suspended sediment transport process.

3.74.3 Total load

The total sediment load in nature is the sum of the bed load, the suspended load and
the wash load. In laboratory studies, the wash load is almost invariably absent and frequently
the total load amounts to bed load only. In this study, predictions of bed load and the
suspended load are summed to provide the total load. Engelund and Fredsee (1976) formula
is used to calculate the total load. This formula which partly is based on ideas originally
introduced by Bagnold (1954) has the advantage that the sediment load is split up into bed
load and suspended load, Since all the formulae which are used here are entirely based on
laboratory data, the wash load is not included,
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1.7-8  Sediment transport divection

Fig. 3.19 Sediment transport direction, illustration.

The forces acting on the grain which is moving on a sloping alluvial bed are: (])
drag, (2) lift, (3) gravitational, (4) normal and (3} friction forces. These five are intrinsk
forces and, according to the type of computation, such as one-, two- or three- dimensional
the directions of drag, gravitational and friction forces are accounted for in thet
corresponding directions. In this study, these forces are accounted for in two-dimensicns. A
common approach is to divide the governing phenomena into two components: (1)
influence of the secondary current due to curved flow and (2) the influence of the slopiy
bed. The direction of the sediment transport is derived from the path of a grain which i
moving with the flow or lying on the bed of the river. When the formulation is based on i
moving grain, the drag force is calculated from the relative flow velocity (i.e. the flov
velocity related to the velocity of the sediment particle); this is known as 'djrmmjn:
approach”. When formulation is based on the resting grain, the forces acting on the grain
equate in such a way that the velocity of the sediment particle is negligible as compared ¥
the flow velocity near the bed. Here the present study follows the dynamical approach. 4
review of this subject is given by Odgaard (1981),

3.7-5.1 The bed-slope effect

The influence of the bed slope on the transport rate is calculated in such a way ¥
the magnitude of the bed shear stress is modified according 1o the bed slope. Therefore ¥
bed shear stress for horizontal bed is calculated in the first place and added the bed sio¥
effect as following:
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8, =0 sin($-1) (3.84)

% sing

in which & is the dynamic friction angle, where ¢ is tan” 3, and 8, is the dynamic friction
coefficient; I is the longitudinal bed slope, 6, is the bed shear stress for horizontally sloping
bed and #, is the bed shear stress value for horizontal bed, The influence of the bed slope
on the transport rate in river bends is very modest; which is declared by Olesen (1987), he
continues: however, the slope dependence of the sediment transport rate is maintained
because it appears convenient in the numerical integration procedure. The same is
experienced in this model, therefore it is maintained in the present study for the same reason.
Moreover, in order to integrate this bed-slope effect with the type of sediment transport
relation, as shown in eqn. (3.81), which does not calculate the bed shear stress, the bed-slope
effect can be introduced using the relation:

5 =mu" |[I+£E} (3.85)
‘ ds

in which e is a coefficient which is proposed by Olesen, 1987, whereby

end % (3.86)
2 b

and variation of b and e are depicted as a function of w/8, as shown in Fig (3.20).
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Fig. 3.20  Variation of the coefficients b and ¢ in the linearized Meyer-Peter and
Miiller formula; (from Olesen, 1987),
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3.7-5.2 The transverse-slope effect

Fig. 3.21 Transverse slope effect, illustration.

The transverse bed slope is much steeper than the overall longitudinal bed slope. Thus
the component along the transverse bed of the gravitational force cannot be neglected with
respect to the other forces acting upon the bed. Therefore this effect is introduced
following. The path of a moving grain on a transverse slope will form an angle | with ihe
direction of the flow. The flow velocity at particle level is taken as U, as shown in Fig
3.21, while U, denotes the mean particle velocily, » is the angle between the particle patt
and the drag. The direction angle Y can be found by the following equation of Engelunt,
(1981).

Iﬁ_f tany
lany = —— — .
v KKy (,&]” (1.87)
b,

slope, §" and 8, are shear stress due to skin friction and initial bed shear stress respectivel)
3.7-5.3 Non-uniform sediment

The relationship between the bed load transport and the boundary shear stress field
in river meanders varies with the size and the heterogeneity of the bed material. T
expression for the rate of bed load transport can be derived from knowledge of the e
particle velocity. It is assumed lha! the hcd load 1s the transport of a certain fraction p (-5
probability) of the particle located in a single layer. One of the distinct characteristics of ™
river bend topography is that the grain size distribution of the bed material
considerably in the transverse as well as in the longitudinal direction. Therefore inst
a certain fraction, a number of discrete size fractions are considered by several
This means that the sediment mixture is divided into a numher of discrete size fractions: F
each size fraction a sediment transport formula and continuity equation are applied. sﬁ:,g
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nvestigations have been made, but the most common type of model used for this purpose is
one-dimensional. Among the more important models are those of Thomas (1979), Ribberink
(1980), Deigaard (1980), Odgaard & Kennedy (1982) and Olesen (1987). Olesen’s (1987)
model is a two-dimensional extension of the Ribberink (1980) model. Deigaard (1980) and
(xdgaard and Kennedy (1982) have developed models for the grain size distribution in river
bends, Non-uniformity of the bed material is also an important factor when the accuracy is
concerned. The total transport capacity prediction will be different if we calculate the
sediment transport in fractions: this will make a big difference in the bed level configuration
and consequently the bed forms and the bar formation in the bend.

However the ultimate goal of the study is to be able to predict the plan-form
movement and thus a non-uniform sediment transport calculation is here considered from two
points of view. The first involves including the non-uniform sediment transport and the
second restricts itself by omitting this step for the time being. Positive and negative points
on both sides are considered. The most important reasons and positive points that give
support to the first approach have already been mentioned in the previous paragraph. There
are also reasons that support the second approach, as follow. A methodology for the
modelling of non-uniform sediment transport was developed by Ribberink (1980). The main
principal is that the alluvial bed can be divided into an active and a passive layer. The
interface between the two layers is poorly defined. Although the definition of the interface
does not appear to have any excessively negative influence on the final computed equilibrium
bed topography or grain size distribution, Olesen (1987) has reported that ir may have a large
influence on the simularion time needed to obtain equilibrium. In the size-fraction transport
formulae, the equations for the sediment transport rate which have been developed for
uniform sediment have long been used because there appeared to be no practical alternatives.
Therefore the ideology of predicting-correcting has been introduced for the non-uniform
sediment transport calculation. The essence of this approach is that the transport rate is
predicted by the simplified equations and the corrections that follow can be reasonably
accurate for certain specific phenomena such as these in which the smaller grains ‘take
refuge’ behind the larger grains. These corrections are known by the name of the ‘exposure
corrections’, and the ‘sheltering or hiding corrections” and are expressed in terms of
coefficients. The following physical phenomena are generally supposed to determine the
sheltering coefficients:

(1) sheltering or hiding of the smaller sizes behind or below or underneath of the larger

SIZES.

(2) an increased exposure o the flow of the larger sizes.

In many transport formulae, the transport is calculated in terms of the excess shear
stress (7-7,). It is clear that a constant r, value apply for all size fractions. Therefore a
correction factor (shelering coefficient) for the critical bed shear stress is used. This
correction has a similar effect, viz. a reduction of the transport rate of the smaller sizes and
an increase of the transport rate of the larger sizes. Moreover, from the accuracy point of
view it has earlier been concluded (Thein, 1989} that using more size fraciions in numerical
simularions results in more accurale answers but ar the same time the accuracy decreases
significantly when the Courant number I3 very small. Therefore, the second point of view is
adopled in such a way as 10 omit the non-uniform sediment transport computation in this
study.
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3.7-6 Variable roughness

Fig. 3.22 Definition sketch for the introducing variable roughness in the numerical
madel

—

The important role of the roughness coefficient is considered here. The roughnes
coefficient is commonly used as a calibration factor to allow for all the other uncertaintie
in an application, (eg. phenomena which are not accounted for). Therefore the Chézy val#
used in the numerical model may sometimes vary much from the value which represents ool
the frictional resistance of the channel boundary. Nevertheless, ir is importans that ¥
coefficients should retain a physically realistic value since the predictive capability of ™
calibrated model may otherwise be endangered (Cunge et al., 1980, pp381). In the prest?
study, the local actual coefficient of friction is simulated and investigated (see Fig. 3.22}
order 1o be able 1o distinguish between two representations, as the frictional resistance ¥
as a calibration factor, The local alluvial roughness is simulated from the formation &
dissipation of dunes, from which grain-resistance and form-resistance are calculated. T
roughness predictor is used twice, firstly explicilly in the hydrodynamic equations as ¥
hydraulic friction term and secondly, implicitly, in the transport prediction.
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3.8  The depth-averaged bed topography model
_The depth-averaged bed topography model based on the depth-averaged form of
following equations; (1) continuity of sediment, (2) angle between the depth-averaged

velocity and the bed shear stress, (3) direction of bed shear stress, (4) direction of sediment

transport and (5) transport models, These equations which are used in the present model are
listed below.

s, = 5, Cosy (3.88)

5. =5, tany (3.89)

gh _ 95, 95, tany) 5, tang

dar  ds dn R, R,

d tand h
LIRS m = gl.
h-!l' E.r tﬂ.l'l.-ﬁ‘ ER, ﬂ }
Toi o tan 6 = ot o tan (3.92)

The o

tanyg = tan 3 + G [;ﬂ"% (3.93)
5, =m U} (1+e2h (3.94)
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39 The integration procedure of the model

Fig. 3.23 An illustration for the bed-level computation

There are fifieen variables to be calculated in order to complete the bed topography
simulation. These are h. P, 4. 5‘.1 S‘,l Sp I.:"'ul‘-l- a:r 'E'n ks R.i-- Rupr R.q: i and G. The ]'I'IEH.I'II“E of
symbols are explained in their corresponding equations. The computational points for thes
varizbles are shown in their corresponding places in Fig. 3.23,

The bed elevation is calculated in the manner, that rate of change of elevation over
an area which is discretised in a unit computational grid times that reference area is aquﬂj
10 the 1otal change of mass balance in that particular computational grid. Each grid
considered in this way and calculated one by one from the convex bank to the concave pank
through the whole width. Afier the whole width is through with one time caleylation, it ¥
called one ray. In this way the enlire river reach 15 calculated from the upstream entrance
the downsiream end ray by ray. Therefore the calculation procedure consists double swee?
algorithm in the scnse of the first and second sweep crosses each ather perpendicularly. T
direction of the first sweep is across the river width from the convex bank 1o the contd™
bank and the direction of the second sweep is along the longitudinal direction from
upstream of the nver reach to the downsiream of the river reach,
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J. 10 Analysis of the morphological model

Here some analytical solutions of the morphological model are described as a basis
for the later discussion of the behaviour of the numerical model in the verification and
calibration phases, which will follow after this section. Analytical (model) solutions provide
rough estimates as well as certain fundamental insights into the interactions between various
parameters, A simple analytical solution has the advantage of acting as a guide for solving
practical problems and for the verification of numerical models that have been developed to
handle more complex situations. The analytical solutions for two dimensional morphological
model in case of depth-averaged equations are derived previously amongst other by two
authors Olesen (1987) and Talmon (1990), The present model has many differences in
comparison with Olesen (1987) model; yet the basic depth-averaged equations can be
analyzed in the same way. Therefore the following solutions are described and discussed,

3.10-1 Olesen solution

The analytical solution of the flow and bed topography in the river bend is initiated
by Struiksma, 1983 with strongly simplified model. The flow is simplified by dividing the
channel into two adjacent straight channels, both of uniform depth. In stream-wise direction
sinusoidal perturbations, with amplitudes being a function of the stream-wise co-ordinate, for
the flow and the bed topography are assumed. In the analysis adaptation lengths for the flow
and bed topography are introduced.

A, adaptation length of flow is given by the equation:

b =k £ (3.95)
22

A, adaptation length of bed topography is given by the equation

1 W h
R M- e ) s
I € (3.96)
The solution of the problem is given by the following equation
= b‘j }l }»'.
- 3 L L, L, S
(k)P + kA ( 3 }H} 5 0 {3.97)

in which k is the wave number of the bed deformation, i for imaginary part, and b is the
power of the sediment transport equation. The solution mainly depends on the ratio of the
adaptation length of the flow o that of the bed topography. In fact the solution can be
interpreted as saying that bed disturbances in the alluvial river bend will either grow or
decay in the flow direction according 1o the ratio of /A, In equation (3.89), the wave
number k is dominating influence on the deformation of bed disturbances. The wave number
k itself consists however two parts, namely a real part and an imaginary part: k can be
written as k, = + k, +k; where i=+/-1 as usual and subscripts r and i represent the real and
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—

the imaginary paris respectively, Once again, as a dominant factor, k is directly related o
the ratio A/ k..

—

. LESEND |
i . - S bal
3 R
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& a2 =L I 1 T4
—_— hfh —_— ki

Fig. 3.24 Wave numbers of the model of Struiksma, 1983,

In Fig. 3.24, k h, and k; A, are depicted as a function of A/A,. Egn. (3.97) suggest
that an increasing alluvial roughness provides less damping and shorter wave lengths. For
comparison with numerical simulations a somewhat more quantitatively accurate analysis s
called for. Therefore Olesen, 1987 has contributed the extended analysis. The flow mode!
of the analytical solution is based on the depth-averaged flow model. Curvature of the oo
ordinate system and secondary flow convection, however are neglected (i.e, 1/R = 0, k.=
0). The depth-averaged set of flow equations is linearized by superposition of perturbations
on the leading variables, such as U,, U,, h and R,. For instance, U, = T, + 1", with U,
the value in the unperturbed situation and U’ the perturbation. For U,, h and I/R, simil®
expressions are substituted. After this manipulation, the govemning set of equations for
analytical model becomes a set of the first-order perturbation equations. From there th
fluctuating pressure is eliminated by cross differentiations for longitudinal- and transverse
momentum equations. The fluctuating components of the variables at coordinate s and n 2%
maodelled by harmonic perturbations.

For this purpose, additional dimensionless wave numbers, k and k, is introduced, sueh
that k is the wave number in the longitudinal direction and ky is the wave number in
transverse direction, The boundary condition of impermeable side walls constraints I
transverse wave number as follows:

B8



DEVELOPMENT OF A BED TOPOGRAPHY MODEL

L %:m (m = 1.2,3,...) (3.98)

At this point the solution of the analytical model appears in a sixth order polynomial
form as follows:

1[N ke ] + 1B ks ~eky - peks)
o Dbk, ok (Gredky+b) gky-ecky)
+ f’f{.ﬁk:-)ﬁﬁ:ﬂﬂwlﬂéhﬁki—b.pk;—ﬁ'ldgki] (3.99)
o IPlky+(3-B)A Ny +IBeky+ GN Ky -2eeks)
« 1 if(h-3)ek, -Gk, -2G\ gk;] + [2Gekg] = 0

in which | = k/ky, ¢ = g/Clk; . the other variable being the same as those introduced
earlier.

The solution is depicted in Fig. 3.25 this is a typical standard guide for the simulation
of two-dimensional bed topography model. That is why it is used as a standard guide for the
present model.

T T aw

o m—

::l.-l_ b iy gk, 'n e
= am | aw Qi T
T | e | Wi ET wife

r g L

i ol Bymiiinn b

Fig. 3.25 Solution of the extended model of Olesen,
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i.10-2 Talmon solution

Talmon, 1988 has recalculated the analytical model of Olesen, by adding the beg
shear stress direction angle & into the flow model equations. Detail explanation is referred
to Talmon, 1988, Hence the solution of the analytical model reads:

A A
I‘{Ek'.‘TF] + 1 17 ‘Fﬂ’;—ﬂ'k;&h—"‘" + hi':%"}
(1]

o) o

hY A
- H[b]:‘ + ﬁﬂk:f- {r.g.l:'g * Ekgf + Gk;)l_“(]

h
o ] a
A
i P[-bek,~ek, -e.i:;ﬁfﬁz + kig E:?—Gk:—ﬁk:gh_d] (3.100)
1] 1] hﬂ

A
- F[-b:—:kjf—?czk: + ky + 362 o 3ekyB-Geky + Gk.?fi]
a h-l]- 'hp
: A
+ i | [bek, - 3gk, - Gki - Eﬂrk;h_"f] - 2Gek?! = 0

in which all symbols are transformed to same notations as Olesen’s symbols in order o
compare eastly.

3.10-3 Discussion

The analytical solutions presented in Sections 3.10-1 and 3.10-2 has the only on
difference that is the way of applying the angle 5; & is an angle between the direction of bed
shear stress and the direction of the depth averaged velocity, Talmon, 1988 claimed that this
angle has been incorporated in both the flow model and the sediment model while Olesen.
1987 has omitted this angle for the flow model but incorporated in the sediment model
Talmon model gives a resultant equation which is different from Olesen’s resultant equation.
However, at that stage it has not been investigated in how far results deviate from each other.
In this study, this effect is investigated by means of numerical model. In one version of th
numerical model, the angle is omitted in the flow equation and in another version of the flo¥
model, the angle is incorporated in both flow and sediment models. Any significa®
differences have not been noticed by studying the bed topography configuration of ¥
simulated results. For the second lest, in the first version, this angle is omitted in both 0¥
and sediment models; in the second version, this angle is incorporated in both flow &M
sediment models. Of cause, as expected the bed topography changes significantly, Therefor®
it can be concluded that the effect of this angle is more important in sediment transpe®
misdel than in the flow model.

Besides above mentioned way, the two analytical solutions are almost identical. T
these two are reparded as one analytical solution, and it is used as a guide to discuss ¢
behaviour of simulated bed topography of the present numerical model, in terms of #&*
numbers and adaptation lengths.
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311 Verification of the morphological model

For the verification of the numerical model, the ume experiment T4 (Olesen, 1985h)
and the natural river situation described in section 3.11-3 are used. The model is tuned by
means of measurements until the best agreement between calculated and measured results is
obtained.

3.11-1 The basic data needed for the model
The basic data needed for the model are as shown in Fig. 3.26,
3.11-2 Flume experiments

The experiment T4 which characteristics listed below is used to verify the present
model. Experiment T4 has been carried out in the DHL (Delft Hydraulics) flume by Olesen,
1985b). The width of the flume is 2m, the radius of curvature of the centre line of the flume
is 11.75m. In Fig. 3.25, the plan form of the flow is depicted. In experiment T4 most of the
straight inflow section, as far as 1 meter before the bend entrance, was filled with gravel in
order to minimize the quantity of sediment require and to promote a homogeneous flow field.
The sediment was released to the flume at the end of the gravel layer, The measuring
procedure are referred to Olesen, (1985b).

In order to verify the numerical model, the set-up of the numerical model follows the
experiment such as upstream portion of the bed is kept fixed also 1 meter before the entrance
(precisely 0.926m). The grid size is the s-direction As = 0.925m and in the n-direction, An
= ().5m. Computational nodes across the flume width are 4 numbers and number of nodes
in s-direction are 58, Therefore entire area of the flume is covered by 236 numbers of unit
surfaces, each unit area is defined as As * An. Engelund and Hansen transport formula is
applied for sediment transport calculation. The coefficient for the secondary flow intensity
is used as 0,75, Since the flume is in rectangular cross-section and the governing equations
which are used in the numerical model is only suited for the mildly sloping banks, the artifice
for the adapting vertical steep side wall is necessary. Equation (3.101) is used to achieve this
purpose.

i-dh h: ?H‘
= =2 =151 (3.101)

This equation is somehow added to the flow model from the early stage and controlled
by 'q' value to decide whether this effect to be included or omitted. For this experiment q
equal to 2, was suitable. The time step At = 600 sec and about 300 time steps are needed
to reach the equilibrium condition. The result is found o be very good and it is presented
in Fig. 3.28, This particular simulation has been selected here because it was found by
Olesen, 1987 1o be a particularly critical and difficult one to perform.
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No. 4)

Fig. 3.27 Plan-form of the experimental flume (from Olesen, 1987)
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3.11-3

the flu

The natural river situation

The application of the model to the natural river situation is very much different from

me experiments. The main differences are as follow:

The steady flow condition is not well defined. Consequently, it demands a
choice of a dominant discharge and water surface level. It is especially
important to choose a representative width-to-depth ratio, as this has a large
influence on the predicted bed topography. The discharge, in the sense of
overall mean-flow velocity, has an influence only on the equilibnum bed
topography through the term f{#,). On the other hand, the term f(8,) is used
as a calibration parameter, and it influences the time scale at which bed level
changes take place (through the sediment transport model, egn.; dh/dt =
ds,/ds + dS_/dn + S5_/R).

Fig

E 10

. 3.29 Plan-form of the river Waal, The Netherlands

94

The plan-form of the river is not the shape of an alluvial container; instead is
the alignment along the centre line of the thalweg. Therefore the plan-form
varies with the width of the thalweg and the width varies along the river and
with the water surface level. In the case of bank-full flow, it is rather easier
compare Lo the form at low flow. In the case of low flow, the situation in
which the survey took place, the point bars are not submerged. This implies
that the curvature of the river axis is poorly defined.
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3, The river banks can very rarely be seen as vertical side walls. The vegetation
cover both on the bed and the bank produces an extra friction factor, which
corresponds to a non-alluvial roughness, influencing the flow distribution and
consequently the sediment structure.

4, The grading of the sediment of the river bed influences the estimate of the
roughness coefficient which has to be used in the simulations, and thus the
total and local sediment transport rates. It thus has an influence the shape of
the equilibrium bed topography.

31,12 Performance of the model

The application of the proposed model is tested in two cases. Case number one i
using field observations in the Ishikari river in Hokkaido, Japan and case number two is
tested on the trapezoidal cross-sectional shape of an arbitrary river. These can be considered
as a calibration phase.

The temporal evolution of the bed topography has been simulated by the numerncal
model. The numerical routine repeats the calculations until the rate of bed level profile
evolution becomes "negligible’. The correct definition of the term "negligible’ is not obviou:
and may vary depending on the purpose of the simulation. Thus the convergence criterion
will not be specified further until specific numerical experiments are discussed. Some
example test runs which illustrate the general trend of the convergence criteria have bes
performed.

i Bed level along the left bunk (locking D/S)
5t =gk
E i
i :
[ |
e ot SR S MSS —
] points from upstream { J=1 to J=30 }
Fig. 3.32  Bed evolution process ]
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3.12-1 Case 1: Ishikari River, Hokkaido, Japan

The model is tested using field observations in the Ishikan river in Hokkaido, Japan,
to be considered as a calibration phase. The river characteristics used for the computation
are summarized in Table 3.2, The bed material and the sediment transported by the niver
flow are relatively coarse, Consequently, the bed topography is formed under a sediment
transport regime which can be classified as being dominated by bed load.

Table 3.2  Hydraulic condition of test reach in Hokkaido, Japan.

Name of the river Ishikari "
Range of calculation (Km) 30 - 34
Average bed slope 1/4900
Flow rate (m'/s) T200. I
Manning's roughness coefficient 0.027
I Average channel width (m) 150 - 250
kiham-:tm-isﬁc grain size (mm}) 1.5
Regime criteria of meso-scale no bars
bed configuration

o i

H"r_':'::i? _l,."-l'-. tokm ]
3 ’fmﬁﬁﬁjﬁ?ﬁ;ﬂwﬂwﬂmﬂ
J'

" 1]

bed topography (in 1981, Tehflard River)

Fig. 3.33 The Ishikari river; the measured data of Shimizu, et al,, 1987 (fig.
above) and the simulated bed topography by the present model with avg.
width of 200m (fig. below).
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Fig. 3.33 shows a comparison of the bed configurations between the observed and the
present model’s calculated values, using the averaged width of 200 meter. For the
comparison, the sounding data of Shimizu, et al., 1987 is used and it is seen that the

performance of the present model is good.

3.12-2 Case 2: Hypothetical river with parabolic cross-section

Case number two deals with a 20 m wide hypothetical river with a straight leading
part which is followed by a series of 175" bend and 275" loop as shown in Fig. 3.34. Thi;
experiment is carried out 1o test the model response to the shape of the channel. The
philosophy of the self-formed alluvial rivers could be explained in a way that the flow exens
a shear stress upon the bed and banks, one *adjusted’ or stable form which the channel can
sesume is one in which the shear stress at every point on the perimeter of the channel is jug
balanced by the resisting stress of the bed or bank at each point. Consider, for example, 3
channel in uniform noncohesive sand at a constant discharge.In this ideal sand channel, a
each point on the perimeter the resisting force due to the weight of the particle is jus
balanced by the applied stress. The maximum angle of the bank will approach the angle of
repose, near the surface, where the shear stress provided by the flow approaches zero. As
shear stress increases toward the centre or deeper part of the channel, the inclination of the
side slope must decline. In the stable or equilibrium sand channel, the channel must be able
to transmit the flow, the shear stress associated with the flow must equal that required for
stability of the bed and banks. By equating expressions for these two stresses and expressing
the tangent of the side slope as a differential or change of height with change in laterd
distance, the resultant cross section has a shape close to that of a parabola. The essentil
point of this theoretically ideal cross section in the simplest stable channel with mobile bed
and banks, two conditions must be satisfied simultaneously - the transmission of the flow and
the stability of the banks. In this hypothetical condition a channel could not transpor
sediment because the required increase in siress would cause erosion of the banks. In
actuslity a natural channel not only carries sediment but migrates laterally by erosion of one
bank, migrating on the average a constant channel cross section by deposition at the opposit
bank. In this case the condition of no bank erosion is replaced by an equilibrium betweer
erosion and deposition. The form of the cross section is “stable’, meaning constant, b
position of the channel is not. This can be called dynamic equilibrium of the channel cros
section in straight channels. In the case of meandering rivers, channel cross sections &%
asymmetric at bends. The appearance of the asymmetric cross section is expected to ¥
double harmonic perturbation and channel width can still be constant and position of ¢
channel is not. This hypothetical river is tested by the present model and the results a%
shown in Figs. 3.35, 3.36, and 3.37. As we have seen, the results are very satisfacton

3 hil ﬂ'l-ﬂj" have .I'E'Prﬂd“":td the :x;ﬂ[ﬂd behaviour as mentioned above,
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313 Conclusions

The model has been verified with flume expenments and natural river situations. It
has been proven to be reasonably accurate with regard to the depth-averaged flow field and
the resulting bed topography.

Concerning the bed evolution process in river bends, it can be concluded that the
point bar and pool configuration of the equilibrium bed in curved alluvial rivers have to be
attributed to a transition in channel curvature. This fact is proven in the verification of the
model in the critical regions such as downstréam of the entrance, the exit of a bend, and the
region of the sudden change of the curvature or inflection points in the successive bend train,
Only in a very long bend of constant curvature (eg. Fig. 3.34; Case 2), there will be a region
(the fully developed zone) where transitional effects have damped out and the classical theory
of river bend morphology holds good agreement with simulated bed configuration, i.e. the
transverse shear force due to the secondary flow is balanced by the downstream gravitational
force, whence the main flow and the sediment transport are parallel to the channel axis.
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1.14  Discussion

Path of the sediment transport::  An atlempt is made to trace the path of the sedimen
transport along the single stream line, There are two possible paths to form a point bar which
i1s located at the inner bend, downstream of the bend apex. The first one is material entrained
from the concave bank is caught in the transverse component and carried toward the middle
of the channel near the bed. The vigorous crosscurrents near the bed in a bend can transpon
a considerable amount of bed material toward the convex bank. This is a part of the
mechanism of point-bar building. If the location from which the bed material was derived
is far enough downstream in the bend, such material is not carried across the bed to the other
side of the channel but moves into the crossover without having crossed the channel., Once
into the reversed curve, it 15 drawn toward the same bank from which 15 started. To trace this
phenomenon, the single bend and a series of bends are simulated with the same hydraulic
characteristics and the same bed material properties. Unfortunately, it has not been possible
to explain the path of the sediment movement cannol be clearly explained from the resuls
of the simulations. However, the cyclic order of curvature effect from the previous bend w
the following bend is clearly noticed, see Fig. (3.38).
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Fig. 3,38 The upstream effect from the previous bend o the following bend.
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The secondary flow convection factor::  The model shows that simulation results using the
fixed secondary flow convection factor across the width of the river agree with the
measurements along the outer wall while it is somewhat underestimated along the inner wall.
On the other hand, if the simulated results fits with the measurements along the inner wall,
it will differ from the measurements along the outer wall. The last and the most laborious
trial is introducing the theoretical value of the secondary flow convection factor at the convex
bank while introducing the double magnitude of the factor at the concave bank; it was
introduced gradually over the river width from first value to the second.

The choice of grid size::  The choice of grid size depends partly upon the amount of local
geometry detail that is to be included, and partly upon the computing cost; often a
compromise has to be made between these two factors.

Some sources of discrepancies and proposed treatments:: Since the nature of the
present model is physical-based numerical model, sources of discrepancies are both physical
and mathematical. In addition, the existence of numerical effects are unavoidable. The
numerical scheme and the integration method are chosen in favour of efficiency and
economy, the consequent-short-comings are accepted without any further investigations. To
improve the quality of the model the proper mathematical expressions which can represent
the physical phenomena as precise as possible is necessary. For this purpose the following
issues are considered and the corresponding treatments are applied in the present model.

L. The channel width used in this study is an average of many repeated measurements
(or at least it is being considered in this way) made from the topographic maps from
which the centre-line is defined as the middle of two bank lines. Therefore, the width
used to normalize the other variables is generally somewhat smaller than the bank-full

value,

2. Inaccuracies in transport predictors and roughness predictors cause inaccuracies in the
numerical model. These predictors are based on a steady uniform flow. There is
already a potential source of errors in applying these predictors in a model with
(unsteady) and non-uniform flow. (Note. The present model has an assumption of
quasi-steady water motion. )

3, Boundary shear stress and sediment transport
Many scales of resistance contribute (o the total boundary shear stress.

4. The present model yields satisfactory results in cases of bed configurations deviating
from a flat bed. However, the influence of the side walls must be taken into
account.The description of the flow field near the sidewalls raises many problems,
both physical and mathematical. The physical problems can be named as those of
turbulence modelling and the others can be mentioned as the computations of laminar,
axisymmetric flows.
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3.15 Continuation

So far the simulation of the bed topography in an alluvial river bend gives satisfactory
predictions and other information about the various sizes of river bend, including an infinitely
long bend train. Al this point, however, an important question arises. That is, on what basi
one can say definitely that a river will change its plan-form. If it will change, in what way
will it shift, and with which pattern; (eg. lateral movement, downward movement, or g
combination of these). Of course, since we are concerned about the instability of the river
the inseparable phenomena is the stability of the river. Strictly speaking no flowing river is
completely stable, but it does have an equilibrium condition, which is the result of a balance
between different processes involving both erosion and deposition within the meso-scale time-
span. This equilibrium condition can last momentary, or some years. If it may in certain
singular cases endure for a couple of decades, it implies the river is not actively changing
its plan-form for a certain time-span. Therefore to be able to distinguish between these two
is prime important for the continuation of the present study.
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“Genuine observation shows plainly that river flow secks the greatest inefficiency thal stdl permits action ®

Crickmay, 1974,

4. A HEURISTIC APPROACH TO THE DETERMINATION OF AN OPTIMUM
RIVER WIDTH

4.1 Theoretical background of self-formed alluvial rivers

The general and elusive problem of river regime or alluvial channel stability is the
prediction of the self-formed active bed and banks of an alluvial river. A common
formulation (Henderson, 1966) is reached by ignoring plan geometry and through attempting
to resolve relationships between six variables, i. e. water discharge, sediment discharge,
sediment size, channel width, depth, and slope. Of these, three are specified, and three
governing relationships are therefore required for a selution.

One main approach to the problem employs eguations to describe the dominant
processes, notably sediment transport, flow resistance, and bank stability. Some attempts to
characterise bank stability have been made (Parker, 1978; Fredsee, 1978; Ackers, 1980),
sometimes assuming the constancy of total sediment concentration in a stable channel,

The other main approach that associated with the various Extremal Hypotheses. There
are in fact five extremal hypotheses that have been applied to sand and gravel bed rivers.
Theoretical justifications for the hypotheses, where they exist, are discussed elsewhere (see,
for instance, Davies and Sutherland, 1983 and Griffiths, 1984) and remain a subject of
continuing debate, In this paper, attention is restricted to one of the five Extremal Hypotheses
which is that of the Maximum Sediment Transport Capacity (MTC).

4.2  Present study

The present study aims to extend the present knowledge concerning an MTC channel
width for meandering rivers. The main objective of this study is to discover whether an MTC
solution exists in meandering rivers, and, if it does exist, whether the width of a meandering
river can define an arc length as a unique function of channel width, which in turn is a means

of characterising the bank stability.

Based upon studies of these three existing theories, namely,

(1) the principle of maximizing T]IIE sediment transport capacity (or) the hypothesis
of maximum transport capacity (MTC) channel width (see 4,3):
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(2)

)

Mow resistance in alluvial rivers, considering friction conditions in both
siraighl and meandering rivers (sec 4.4

shape and dimensions of the stationary dunes in a straight river (see 4.5);

the following further elaborations and developments have been carried out:

(4)

(5)

(6)

(7}

(8)

(9)

Development of a mathematical model providing the shape and dimensiony
of the dunes and roughness predictor model for an alluvial river,

The advancement of theoretical consideration concerning the calculation of
roughness factors for three sets of specified variables i.e. discharge, slope and
the characleristic propertics of the bed materials.

Coupling the roughness predictor model to the numerical model which
simulates the flow and bed topography in a meandening river,

Analysis of the improvements in total sediment transport capacity due to the
modification of roughness afler the first and second improvements in the
numerical model simulations,

Development of an analytical model to predict the equilibrium transverse bed
slope of a meandering channel for the purpose of completing the study range
of width-to-depth ratio between 0.1 and 135.

Calculation of a maximum transport capacity channel width for both straight
and meandering rivers; the width to depth ratio studied ranges from 0.1 @
200.

Particularly in item (5), new theorelical relationships are proposed.

Some insight into the main objective and a method for coupling the numerical
simulation model, which simulates the bed topography in a meandering river, are gained. The
maximum transport capacity (MTC) channel width can be predicted from the function of
slope for a given representative diameter of bed material (see fig. 4.18), or from the funcuor
of representative grain diameter of bed material for a given slope (see figs. 4.19 and 4.20)

Finally the existence of the MTC solution in meandering rivers is found. It can X
concluded that the width of a meandering river may define an arc length as an unigue
function of channel widih for three specified sets of variables namely of discharge, slope and
the properties of the bed matenials,
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4.3  Maximum transport capacity (MTC) channel width

The notion thai sediment load attains a maximum at some particular width for three
specified variables i.e. discharge, slope, and the properties of the bed material, is not at all
new. It was first proposed by Gilbert (1914) on the basis of results from his flume
experiments. Chang(1979, 1980) and White et al. (1982) discovered the same phenomenon
by iterative computer analysis, Ramelte(1979), Chang(1979,1980a,1980b) and White et
al.(1982) have proved the existence of the MTC state in their analyses. Carson et al.(1987)
confirmed the existence of the MTC solution from four analyses. TC

Water, Resesreh and

Previous studies were based on three assumptions fpacilayﬁrlgm%ﬁﬂ"shap:, a
sediment transport law, and a resistance law that allows the elimination of the unknown depth
term in the transport law. Recently Ferguson (1986) commented that an MTC solution fails
to emerge when the Einstein-Brown transport formula is combined with the Manning-
Strickler resistance equation. Carson et al.(1987) found as a himitation of the MTC solution
that an optimum width will not occur when ¢ < m, in which ¢ is a power of flow depth in
Manning's formula and m is a power of effective shear stress in the transport formula.

4.3-1 Problems in previous studies

4.3-2 Possible solution to these problems

Taking into account these previous studies, it is clear that the key to solving the
problem is to obtain a unique water depth for a certain (flow and bed) condition.
Consequently, a determinate solution of channel roughness is essential,

4.4  Flow resistance in alluvial rivers

There are three types of resistance in alluvial rivers. The first type is skin friction,
caused by the roughness that is, in turn, determined by the size and character of the material
in the bed and banks. For a given roughness, the amount of resistance varies with the square
of the flow velocity. The second type is an internal distortion resistance, caused by discrete
boundary features such as bank protuberances, bends, bars, individual boulders, and dunes
that set up eddies and secondary circulations, Resistance from these features is also
proportional to the square of the mean flow velocity. The third type is spill resistance, where
energy is dissipated by local waves, and by turbulence caused when a sudden reduction in
velocity is imposed. Spill resistance is associated with local high velocities, as when water
backs up behind an obstruction and spills into lower velocity flow. Blocks of bank material
slumped into a channel cause such spills, as do some channel bends of tight curvature. Ina
natural stream these individual resistance types cannol be measured. The total dissipation,
however, is indicated by the longitudinal profile of the stream.
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The vaniables determining the resistance to flow are numerous. Major variables can
be categorised into four groups, as follows:

(1) flow variables such as velocity, depth and energy slope of the flow, and
seepage forces in the bed of the channel

(2)  physical properties of water, such as density, and apparent dynamic viscosity

(3)  physical properties of the sediment, such as density, representative diameter
of bed material, standard deviation of the size distribution of bed material and
the shape factor of the particles

(4)  geographic parameters such as the shape factor of the channel reach, the shape
factor of the channel cross section, the gravitational accelerations which are
introduced through the flow resistance at the reach-averaged level as an
integrated resistance.

Previous attempts to predict the flow resistance can be broadly divided into two
categories: (a) those which deal with rhe inregrated resistance offered to the flow using either
2 logarithmic or power type relationship for the mean velocity and (b) those in which the
total resistance is separated into the grain roughness and the form roughness, The latter is
meant for the small scale or one-station geometry resistance excluding shape factor of the
channel reach and the cross-section. After Yalin (1964), an analytical expression for the
roughness factor in terms of the geometry of the bed undulations and the sediment size is
proposed. The expression was derived by summing the grain roughness with the form
roughness obtained by treating the flow in the lee of the undulations as a case of suddes
expansion. The practical utility of this approach mainly depends on the geometry of the bed
undulations. The total resistance of the flow and the roughness factor can be predicted by
various formulae. There are at least 37 of these which have been proposed by various authors
from Chézy (1769) to Sentiirk (1973).

4.4-1 Friction conditions in a straight alluvial river

The friction condition in a straight river is mainly a function of skin friction and
form friction of the bed forms. Low water discharges produce very rugged arrays of ripplé
and dunes on the bed, which give rise to large friction factors. High river flows, on the othef
hand, obliterate the bed forms and move over flat beds whose roughness approaches ¢
irreducible minimum, There is also a considerable range of experiments which shows th
the bed-form roughness responds in much the same way to sediment discharge
concentration.

The river channel roughness, far from being constant, varies widely with both wit*
and sediment discharge. The friction factors of many natural streams vary by factors of ™’
or more (in terms of Chézy's coefficient), and are more variable then depth or velocity. Thif
is because forms and dimensions of bed roughness, the sediment concentration and the 1
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condition are all interrelated. Correspondingly, this interaction poses great obstacles to the
mathematical formulation of natural streams.

4.4-1 Friction conditions in a meandering river

The friction condition in a meandering river is determined by the skin friction, the
form friction of bed forms and the plan geometry. Plan geometry produces extra boundary
features which also govern the friction conditions of the meander. The meandering river
consists of a series of deep pools in the outer part of the bends associated with point bars in
the inner part of the bends and shallow crossings in the short straight reaches connecting the
bends. The pools tend to be somewhat triangular in section with point bars located on the
inside of the bend. Secondary currents occur in this section. In the crossing, the channel
tends to be more rectangular, widths are greater and depths are relatively shallow. Therefore
the velocity distribution is different from that occasioned by straight flows. Point bars and
pools are additional boundary features and, in addition, dunes and ripples occur at the lower
flow regime.

Skin friction iz mainly calculated as being of the order of magnitude of the
representative diameter of the bed material. In the bend, both longitudinal and transverse
sorting occurs. Therefore, the composition is different on the inner side of the bend
compared to the outer side. The dominant grain diameter at the pool is always greater than
that of the point bar.

Another factor which affects the friction factor variation in the transverse direction
is the water surface slope. The slope of the water surface is a direct measure of the energy
exchange when there is no velocity change at a point (steady flow) and when there is no
change in velocity with distance along the channel (uniform flow). For a certain location of
the river reach, the water surface slope is more or less constant over the cross-section in a
straight river, but this is not the case for a meander (See fig. 4.1). The slope of the water
surface in a meandering channel varies in the transverse direction even if the flow is assumed
1o be steady and uniform. The slope is steeper on the inside of the bend and is milder on the
opposite side. Moreover, it also changes in the longitudinal direction when water passes
through the series of pools and point bars.

In summary, water depth, water surface slope and velocity distribution vary in both
the transverse and longitudinal directions. Bed material composition and dominant grain size
vary similarly, Moreover, the width of the active channel along the thalweg varies in the
longitudinal direction. Therefore the friction factor is a variable parameter over the entire
reach of the meandering river. Thus it seems inappropriate to use a constant value or a cross-
sectional average value for those cases which require accuracy.
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Fig. 4.1 Water surface profile of a meandering river

4.5  Shape and dimensions of stationary dunes in alluvial rivers

A deterministic solution for the roughness/friction factor is possible, because
resistance to flow in alluvial channels depends on the geometry of the bed patterns that are
formed by the flow, the properties of the sediment, and the transport rate of sediment.
Suspended load and its concentration is of major importance due to the fact that bed forms
are very significant for values of the dimensionless bed shear stress between about 0.04 and
0.8. In that region the amount of suspended sediment is much larger when the bottom is
covered by ripples and dunes than when the same flow conditions influence a smoothed
bottom, which incidentally after some time will be changed into a stable bed form. To be
able to determine the roughness factor in an alluvial river, knowledge of these parameters
is of decisive importance.

Fredsee's (1982, 1985) method (see appendix B) provides the geometry of the bed
patterns from a knowledge of the flow parameters, the suspended sediment load and the bed
load. Details of the method can be found in Fredsoe, (1982) and lecture notes by Fredsee.
(1985). The accent is on the mass flux (@ = U.h m%/s) as this determines the sediment
transport. The total load is split up into a bed load and a suspended load. The calculated bed
load, suspended load and their gradients with respect to the dimensionless shear stress ar
introduced into the dune dimension formula and the dune dimension is calculated, The sheaf
siress due to the form friction is then calculated.

Finally, the total shear stress is calculated and converted to an actual water depth
corresponding to the prevailing situation. There is only one depth corresponding to a give®
situation and another cannot be assumed. As mentioned above, obtaining a unique watef
depth makes it possible to predict a channel roughness. This method determines automatically
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the regime of the flow according to the knowledge of the dune's dimension (eg. for & plane
bed situation the dune height to length ratio tends to zero), The Reynold’s number is used
as a guide to distinguish between npples and dunes.

4.6 Development of the roughness predictor model

The shape and dimensions (length, height) of sand dunes in nvers are calculated by
use of the bed shear stress distribution downstream of a rearward-facing step. The transport
of sediment is split up into bed load and suspended load, which makes it possible to explain
the transition to a plane bed. The model can predict flow-resistance in alluvial streams
{Fredsoe, 1982). In order to transform the theory into a mathematical model, the following
operations have been carried out.

For the first step of the calculation, the river bed is assumed to be plane, i.e. no sand
wave is present at the bottom. In this case the bed roughness K, is approximately (2.5 times
dy,) in which dy is mean grain diameter. The flow equation, the resistance equation
{Colebrook-White) and the bed shear stress equation can be solved simultaneously by using
three specified variables i.e. discharge, slope and roughness K. Thus water depth, shear
parameter, and bed shear stress are calculated for the plane bed situation. According to the
Engelund (1967) similarity theory, "In the particular case, where the stream bed is covered
by dunes, only a certain part of the total shear is effective in the sediment transport process”.
That is, only the shear stress due to the skin friction, the magnitude of which is the same as
bed shear stress in the plane bed situation, is effective. It is because of this that the sediment
transport can be calculated.

Further, the sediment transport is split up into two parts and calculated as bed load
and suspended load. Engelund and Fredsee's equation is used for the bed load transport. For
suspended sediment transport, it is rather difficult to apply an integration procedure because
of the integral form which consists of vertical velocity profile and eddy viscosity distribution
over the vertical plane. The basic principle of Einstein's (1950) graphs are adopted (see
Appendix B). The evaluation of the integral of suspended sediment load equation is greatly
facilitated by these graphs, but these are of course of little or no help in computer
calculations (Deigaard, 1980). Thercfore, in addition, Deigaard's models (see appendix B)
for the vertical velocity profile and eddy viscosity distribution over the vertical plane are
adopted in this computer model. Since the two-dimensional model in curvilinear coordinate
system has been developed in such a way that the width of the river is split into many strips
{sub-channels), forming a compound channel composed of many sub-channels, Deigaard’s

lels are applied at each strip across the river. The suspended sediment load is calculated
in this way.

Also the rate of change of bed load with respect to the bed shear stress and the rate
of chanpe of suspended load with respect to the bed shear stress are ecaleulated. The
dimension of the dune is calculated by the use of a bed shear stress distribution downstream
of a rearward-facing step. As shown in section B-1 appendix B, the length and height of
the dune are functions of the bed load, the suspended load, and the gradients of the loads.
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-—

After obtaining the dune dimensions, the dimensioniess shear stress due to the expansion log
can be calculated through the ratio between it and the dimensionless shear stress of the plane
bed. This ratio is a function of the dune height, the dune length, and the ratio of the meay
velocity to the friction velocity due to the skin friction.

It should be mentioned that the ratio of mean velocity to the friction velocity due 1o
the skin friction is taken from the plane-bed condition. To be more precise, U,/U, should
be determined by the equation:

U h a,
—* w6 + 2.5 In (<2) .1
U, K,

U, - \ent &

in which

mean velocity of the prevailing condition (dune-covered bed)
friction velocity due to the skin friction

water depth corresponding to the plane bed situation

total roughness ( dune-covered bed)

acceleration due to gravity

waler surface slope

U,
Us
h,
K
E

I

but because U, and h, are unknown this requires a complicated iteration procedures and the
introduction of a further assumption. The assumption is that, instead of the ratio U,/U,,, ¢
ratio of plane bed U,/U;, can be used because small deviations in water depth do not chang
the value of Uy/U,. However it is not justified in the case of a constant dischargt
accompanied with given slope and grain size diameter, the difference between these W
ratios are presented in Fig. 4.2. Therefore further improvements are made in followiné
section 4.7.

Besides this particular assumption, which has been improved in section 4.7, the ot
dimensionless shear stress is calculated as the sum of the dimensionless shear stress due ¥
the expansion loss and the dimensionless shear stress of the plane bed. After obtaining ™
total shear stress, the water depth is deduced. Then the new water depth and ¥
corresponding water discharge for the prevailing situation are updated, In this process, ¥
total roughness can be found from the Colebrook and White resistance equation.

The necessary ph}r:i::a] parameters for the model are the unit dis::hargc, the widthE

the river, the water surface slope, the mean grain diameter, the fall velocity, and the
size distribution curve.
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Fig. 4.2 The differences between velocity ratios involved in the calculation of the

roughness factor in an alluvial-niver bed

4.7  Theoretical considerations for the roughness factor

The development of the mathematical model for the shape and the dimensions of the
dunes and the roughness predictor model is described in section 4.6, Here theoretical
considerations for the calculation of the roughness factor for the three specified variables of
unit discharge, slope, and the properties of the bed materials are made. The assumption that
leads to the use the velocity ratio (U,/Uy) for the plane bed instead of U,/Ug, is not justified
for the case of constant discharge accompanied with a given slope and sediment grain
diameter - which is exactly the situation holding in the bed topography model of meandering
rivers (see Chapter 3). Consequently, two features are introduced that do not enter into the
existing theories,

(1)  The existing theories allow the discharge to be varied from a plane bed to a
dune phase due to the fact that most theories were verified with experiments.
Itis impm:ticab!: o make experiments with different regimes under the same
magnitude of discharge and slope. Therefore experiments are made for the
plane bed and the dune-covered bed separately, but in order to investigate an
interrelating phenomenon between the two different regimes, the mean flow
velocity is kept constant for the corresponding experiments. The result is the
change in hydraulic radius. Thus the discharge is varied. However in the
corresponding calculations, some have used an assumption as described in 4.6
that the ratio of mean velocity U; and the friction velocity due to the skin
friction Uy, is taken from the plane bed condition, Instead of the ratio U o/ Ups
the ratio U /Uy, of plane bed is used as an approximation. To be correct,
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U4/Uy, should actually be determined by the equation (4.1). However, since
U; is unknown, this has required complicated iteration procedures. The
resulting calculation was previously nearly impossible to carry out without 3
computer wutility.

(2) Consequently the calculations start with the discharge under plane bed
condition and, after water depth has been calculated for dune phase condition,
the corresponding discharge for the dune phase condition is always found
be 2 to 3 times greater than it was under the plane bed condition for a given
flume. The calculation cannot be done reciprocally starting from a prevailing
discharge of a dune covered bed. Therefore, according to the existing
methods, the calculations are always made in one direction only, namely from
the plane bed to the dune phase.

The existing methods are applicable as far as plane bed and dune phase situations are
calculated with different corresponding discharges in a one-way direction, because small
deviations in water depth do not change the value of Uy/Uy, since the mean velocity is kepl
constant.

However, the roughness predictor model which must be calculated at the same
computational points and with the same initial and boundary conditions as the numericd
simulation model (see Chapter 3) which simulates the flow and bed topography in #
meandering river, has to be developed under two constraints. In the first place the watef
discharge should be the same both before and after the roughness has been updated. In the
second place, the discharge which is present in the current simulation time step should b
representative of the prevailing condition. Consequently, the approximation of the velocity
ratio U/U,, = U /U, of plane bed cannot be used and the calculation procedure has to ¥
reciprocal, This means that the calculation of the real roughness predictor should be able ¥
start from both conditions, namely the dune-covered bed and the plane bed.

Initially during the process of development, attempts were made to appmximaﬂ
U /U, in many ways and each value was introduced into the computation by iterati®”
methods the two water discharges, corresponding to before and after the roughness updak
converged, After many trials and errors with different numerical filters, it was found that !
implementation could not be achieved by computer iteration methods only. For example, ¥
achieve convergence by using different filters for a specified discharge, the more power™
the numerical filter, the greater are the errors in the physics. This is because it js so vital ¥
keep an accurate value of the definition of U/Ug. Consequently the following theoret
considerations and calculations are introduced.

4




A HEURISTIC APPROACH

(b} Dune-covered bed

Fig 4.3(a) Plane bed

u, # L, Q. = 0Q,
U, # Uy L, = 1,
h - hd dlm- - 'qu_,_-,

The condition between case (a) and (b)
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e

The important parameters such as the mean velocity, the friction velocity, the water
surface slope (or strictly speaking the energy slope), and the friction factor are each split intg
two parts. For example, the water surface slope is implicitly composed of the two parts of
the river surface slope, namely (1) the grain-influenced slope and (2) the form- influenced
slope, as shown in Figs. 4.3(a) and (b).

The integrated roughness factor is simulated by the computer program for both plane
bed and dune-covered bed conditions as shown in figures 4.3(a) and (b). The results are
presented as a family of curves. One family of curves serves as a graphical solution for 3
given discharge, slope and, the properties of bed material for the maximum range of water
depths, for example those of Fig. (4.4). For several slopes and different grain sizes a large
number of families of curves are produced, These are family of paraboloids the focal lengihs
of which vary with the discharges.
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Fig. 4.4 Correlation of integrated roughness ratio and water d ratio betwee!
plane bed and dune-covered bed, cpth
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The other parameters such as the total dimensionless shear stress, the dimensionless
shear stress due to the skin friction, the friction factor, and the friction velocity are simulated
similarly. Therefore the relationships between each parameter mentioned above and the shear
parameter are found for both conditions. To find the dimensionless ratios of the parameters
for two different conditions, the corresponding value of each parameter in the dune-covered
bed case is divided by the corresponding value of each parameter in the plane-bed case (see
figs. 4.5 and 4.6). These dimensionless ratios of the parameters are used to draw up the
general relationship shown in Fig. 4.7.
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Fig. 4.5 Correlation of dimensionless shear stress ratio and mean velocity to

friction velocity ratio in dune-covered bed and plane-bed condition

From the over all picture of the simulation results, a general relationship between the
plane bed and the dune-covered bed is found for a constant discharge and energy slope
combination (see fig. 4.7). Fig. 4.7 gives the U/U,, ratio in terms of the U,/Uy and U/U,,
ratios. The U,/U,, ratio is very important, not nply for the development of the computer
model, but also for the physical expression. U, is the mean velocity of the river and U,
represents a variation of the fluctuation of turbulence around a point near the boundary of
a channel excluding the bed forms.
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——

Thus a general relationship between the ratio of mean and friction velocities of 2
dune-covered bed and of a plane bed can be written as follow °

U, 7. = tr an
—) ® [ E e (9 4,
IIU#E {Uj—} {{{H} (4.3)

if the set of three specified variables - discharge, slope, and bed material properties - is the
same in both conditions.
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Fig. 4.6 Correlation of dimensionless shear stress ratio and a ratio of velocities

It can be stated as a general relationship which can be applied within a wide rangf
of validity, The range of the validity of the velocity n::laliunship is limited by three vaniable}
(1) water discharge Q from 130 m'/s to BE136.0 m'/s ; (2) energy slope 1 from 109 to §!
* 10* see Fig. (4.4); (3) mean grain diameter dy, from 0.47 mm 10 1.25 mm. Finally
roughness coefficient and the dune dimensions are salisfactorily predicted and the model ¥
compatible 1o the bed topography simulation model’s specifications. The frequency wit!
which the model can be applied to a bed lopography computation is only a question @
computer time and related economics.
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4.8 Connection to the bed topography simulation model

The roughness predictor model is added to the bed topography simulation model and
a verification for the consistency of the discharge 1s made. The deviation of water discharge
before and after the roughness has been updated is proved to be only 0.35% , Therefore, the
discharge which is present in the current simulation time step is hardly affected by the
updated procedure of the roughness and is still representative of the prevailing condition.
Thus the calculation can proceed from 2 plane-bed to dune-covered bed and vice versa.

The computational domain of the bed topography simulation model consists of single
cells in both downstream and cross-stream direction over the entire area of the river bend as
shown below (see Fig. 4.8). Each individual cell has its own water discharge , velocity,
water depth, sediment discharge, and bed shear stress. However, the roughness coefficient
is the same for all cells. Before the roughness is updated, a constant Chézy's coefficient is
used. After the adaptation of the roughness predictor model each cell has received its own
roughness coefficient.

However, after the roughness is updated in each computational cell (see Fig. 4.9), the
bed topography model can become unstable. The explanation for this instability is the
following. The present model based on the set of two-dimensional shallow-flow equations.
The sediment is eroded and is deposited along the each sinp of the river cross-section, for
water depth, velocity and water surface slope are calculaied separately in each strip. This
implies that each strip of the river cross-section behaves as a separate channel and each
abides by both mass and momentum conservation laws. Since the roughness coefficient varies
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from upstream to downstream in the simulation model, the water level along the specific strip
becomes undulated. Hence it comes into conflict with rigid lid assumption of the bed
topography model (see details in Chapter 3 and appendix A) and this results in instability.
On the other hand, the simulation model works very well if a variable roughness is
introduced in the transverse direction only. In fact, the variation of the roughness coefficient
in both directions is a little bit exaggerated and this is not really necessary in the case of
simulations of the bed-topography and the meander evolution since the necessary and
sufficient solution is obtained by applying the variable roughness in the transverse direction
only (see Fig. 4.15(b)).
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Fig. 4.8(a) Plan view of the nver (b) Computational cell
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Next to the above-mentioned investigation, the following calculations are made @
achieve the main objective of determining the optimum channel width in a meandering river

(1)  Three variables - the unit discharge, the slope, and the mean grain diameter -
which are to be used in the simulation model are specified and
corresponding roughness coefficient for the initial condition is predicted. I
should be mentioned that the grain size distribution of the bed materials b
o be specified.

(2)  The predicted roughness coefficient is used for the entire area of the fivef
until an equilibrium bed topography is reached. Therefore it is constant 0v&
the entire reach but the accent is on presentation in the context of the b
material properties and the flow,
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(3

When the equilibrium bed profile is reached, the transverse bed slope, the
pool and the point bars are all formed. A new flow field results. The total
roughness can be updated from the unit discharge of water, the slope, the
mean grain diameter, and the bed material distribution of the new flow field.
In this study, the grain sorting effect is excluded. Therefore the mean grain
diameter and the bed material distribution remain unchanged throughout. After
the total roughness has been calculated, the variable roughness factor in the
lateral direction, (but not in the longitudinal direction) is used to recalculate
the sediment transport capacity of the meandering river.

Fig. 4.9

Representative local roughness in the corresponding computational cells
over the river bed.

(4)

(5)

The effect of the river width upon the sediment transport capacity in a
meandering river is of major interest. The total sediment transport capacity
increases with transverse bed slope (see Fig. 4.10). The sediment transport is
also affected by the asymmetrical transverse bed slope and the irregular bed
level profile, An example of bed level profiles and transverse bed slopes
simulated by the bed topography model of Chapter 3, are shown in figures
(4.11) and (4.12), However the bed level profiles and transverse bed slopes
can deviate very widely according to the use of calibration parameters (see
Fig. 4.13). Therefore care is needed for all calculations the effect of the river
width on the sediment transport capacity of a meandering river is to be
analyzed.

Figures (4.14) and (4.15b) illustrate the sediment transport capacity variation
in both amount and trend using different roughness factors. For the given
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discharge and slope and the use of a roughness factor determined
independently from the bed material property, the Chézy coefficient is found
to be 30 m**/s. The sediment transport capacity for various widths of the
rivers calculated using this value is shown by the full line.

The first improvement in the estimate of the roughness is obtained by taking more
account of bed material properties and the flow. The cross-sectional averaged value is used
for the sediment transport calculation. The sediment transport capacity calculated by this
roughness is shown by squares in the figure.

The second improvement in the roughness estimate is obtained by taking more account
of the bed material properties and the local flow conditions. The sediment transport capacity
is calculated by varying the roughness along the transverse direction. The result is indicated
by triangles in the figure,

Figure 4.15(b) suggests that using a mean value of alluvial roughness in the
simulation is justified and attractive in the case that only the total sediment rate is of interest
and if the calculation of the roughness factor is based on the flow, the bed material
properties, and the corresponding regime.
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Note. Figure (a) shows the resultant (deeper) water-depth and (smaller) radius of
curvature than figs. (b) and (c). Figure (b) and (c) have the same physical parameters
but different calibration parameters. Therefore these two figures illustrate the effect of
calibration parameters,
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a constant Chézy coefficient and with modified roughness.
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The roughness factor is calculated from the flow condition
only. E.g. Chézy's coofficient is calculated from
C = UIRIP?

The roughness factor is predicted by the flow, the bed
material properties and the corresponding regime. The
averaged value over the cross-section is used in the flow
simulation model. C,., =(C,+Cy+Cy)i3

Step(3) The second improvement; The roughness factor is predicted by the ﬂﬂw‘. the hed
material properties and the corresponding regime. The

hnﬂmghuuﬁcﬁuc..tgmdﬂjmm:#wﬁbh
roughness factors over the entire reach.

Fig. 4.15(a) An illustration of the step-by-step improvement in the roughness factor
employed

Sediment transport (m’/s)

Fig. 4.15(b)
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4.9  Calculation of an MTC channel widih for a straight river

The calculation of a maximum transport capacity (MTC) channel width for a straip,
niver over the range of width-to-depth ratios from 0.1 to 200 has been made. The numericy
model is used in a range of width-to-depth ratio from 15 to 200, For a width-to-depth rs,
between 0.1 and 15, the analytical model described in section 4.14 is used (see Fig. 4, 16},
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After oblaining the roughness factor for a certain condition, it is then quite
straightforward to calculate the sediment transport capacity of the river. For this calculation,
Fredsee's formula is used to obtain the total load in a straight river. For a given set of slopes
(I) and representative diameters (dy,), the sediment transport is calculated for variable widths.
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Fig. 4.17 Grain-size distribution curves

While computing sediment transport capacities for different grain diameters, some
effects of sediment distribution is noticed. In the computations, five different bed materials
are used. The grain size distribution curves of these different bed materials are shown in fig.
(4.17). The geometric standard deviations of the grain size distribution for all curves are the
same; the value is 1.59. If the river bed consist of the bed material shown in curve No. 5,
with mean diameter 1.25 mm, there is a deficit in fine sediments. The critical shear stress
then appears before the maximum sediment transport capacity has been reached. At another
extreme, curve No. 2 corresponds to a very fine sand and lack of coarse materials; therefore
the bed shear stress is very high and the grains are not able to form a dune covered bed.
Therefore the regime is that of a plane bed under the strength of the flow which is specified
by the given discharge and slope. It is noteworthy that, for such a condition, the maximum
sediment transport capacity appears for a width-to-depth ratio 3.0. This means that
comparatively, the inertia of the flow is very much effective than the resistance.
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Taking into account the above mentioned calculations, the resulting experience can
also be connected to the physics, One of the factors which affects the resistance of alluvig)
rivers 15 the presence of sediment in suspension, From the laboratory experiments, leaving
all other parameters unchanged, the mean velocity of water charged with silt is greater tha
that for clear water. Similarly, for a given stage and slope, the Nile river, for example, has
a greater mean velocity on the rising stage than on the falling stage. The appreciable
reduction in Manning's roughness factor was believed to be due to the increase in suspended
load which damps the turbulence near the bed. The experimental results of Vanoni and
Nomicos show that the presence of fine sediment in suspension decreases the resistance i
flow; the decrease is more in the case of a plane bed. With a plane bed, a reduction i
friction factor due to suspended sediment, from 5 to 28 per cent, was observed.
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Fig. 4.18 Optimum width-to-depth ratio as a function of slope

The MTC solution emerges for different slopes and different width combinatio®
Finally the maximum transpori capacity, MTC channel width can be predicted from
function of slope for a given representative diameter of bed material (See figs. 4.16 and
4.18), or from the function of representative grain diameters of bed material for a g

slope (see figs, 4.19 and 4.20).
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Q = 5000.0 my/s ; slope = 4,182*10*
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4.10 Calculation of an MTC channel width for a meandering river

The calculation of a maximum transport capacity MTC channel width for a
meandering river ranges from width-to-depth ratio 0.1 to 200. The numerical model is used
in the range of width-to-depth ratios from 15 to 200. For width-to-depth ratios between 0,1
and 15, the analytical model described in section 4. 14 is used (see figs. 4.21, 4.22, 4.23 and
4.24),
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For a meandering river, the maximum transport capacity is calculated for a certain
dynamic equilibrium condition. The procedure consists of four steps. In the first step, the
roughness factor is predicted as for a straight river for a given discharge, slope and
properties of bed materials. Secondly, the equilibrium bed topography for a meander is
simulated from a constant roughness factor determined from the first step (see figs. 4.11, and
4.12). Thirdly, the equilibrium transverse bed s!np: and local downstream water surface
slope for each strip across the width are taken into account to predict the corresponding
roughness factors for corresponding positions and the corresponding roughness factors are
calculated (see fig. 4.15(a) and (b)). The shear stress is then calculated for the prevailing
condition. Finally, the sediment transport can be calculated for variable widths,

The MTC solution emerges for different slopes and different width combinations.
Thus the maximum transport capacity, MTC channel width can be predicted as a function
of slope for a given representative diameter of bed maftenair (see figs. 4.23 and 4.24). A
comparison between the straight river and the meandering river is shown in fig, 4.24 . A
comparison between two MTC solutions for meandering rivers that were calculated from the
downstream channel thalweg slope and down-valley slope is shown in figure 4.25. From
these figures, it can be concluded that the river develops into a meander rather than a very
wide siraight reach (see figs. 4.26 and 4.27). This is achieved by adjusting the slope from
an upstream point to a downstream point controlled by the same energy
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expenditure. By doing so, the river attempts to reduce its destructive potential, as expressed
in terms of the bank erosion. In other words, a kind of stable condition develops.

The last calculation is made in order to include the effect of grain sorting on the
meandering river. The sediment transport rates for the cases with and without grain sorting
are calculated and compared. Grain sorting provides a natural prevention to the river bed
against being scoured too deeply at its outer bend. Grain sorting causes a variation in
roughness factor from the outer bend to the inner bend. The water surface slope along the
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river bend is not the same for each strip across the width, since the outer bend water surface
slope is milder than it is at the inner bend, because of the different distances over

Fig. 4.26
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which the flow has tc be conveyed. The sorting effects counterbalance the effects of the
velocity being so different from inner bend to the outer bend and the sediment transport rate
increases by only one or a few percent.

The two possible reasons for this are now seen to be as follows :

(1)  the representative diameter is changed but not the composition. Therefore the
sediment transport rate is not properly treated as a graded sediment transport
rate calculation.

(2)  dune sizes are predicted and taken into account in owe particular way (ie.
different dune dimensions distributed over the entire area). Therefore the
friction due to the size of the individual grains does not contribute the major
part of the roughness factor, but only a part of it.

It can be concluded that if only the total sediment transport is of interest and when
the changes of water surface slope and total roughness factor are taken into account, the grain
sorting can be neglected.

Figure 4.14 suggests that most of the error comes from the use, or rather misuse of
the roughness factor., The accent is on the calculation of the roughness factor and if the
roughness factor is correctly calculated it will result in no serious harm to use the mean value
of the alluvial roughness over the cross-section. This appears from the effects of the first and
second improvements introduced earlier.

4.11 The meander arc length and the MTC channel width

Existing theories indicate a general relationship between meander arc length and
channel width whereby it is possible to define the relationships between the wavelength, the
radius of curvature and the channel width for different circular-arc angles (Table 4.1). This
explains why empirical equations are specific to a given set of data unless the meander arc
length is invariant. Sinuosity is probably the best measure because it is related to the meander
processes, Any change in channel slope due to a value defined by the sediment transport
capacity results in a new width (see figs 4.18, 4.19 and 4.20). It can be considered as a
constant valley slope with various arc lengths (see fig. 4.28). For a single value of sinuosity,
an almost infinite number of patterns are possible. If the meander geometry is to be specified
accurately, then it is necessary to determing the size of each meander are, since arc length
i5 a unigue function of channel width, (e.g. fig. 4.29) which in tum is a function of the bank

stability equation.
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Table 4.1 Relationship between wavelength (M), radius of curvature (R) and
bank-full channel width (W} for various arc angles ()

Arc angle (F) vaITe-uf k in Value of m :n__ Value of n
‘ (R=kW) (A=mR) (A=nW)
270 1.33 2,83 3.77
225 1.60 3.70 5.91
180 2.00 4.00 8.00
150 2.40 3.86 9.27
135 2.67 3.70 9.85
120 3.00 3.46 10.39
S0 4.00 2.83 11.31
&0 6.00 2.00 12.00
I 45 8.00 1.53 12.25
30 12.00 1.04 12.42
15 24.00 0.52 12.53
10 36.00 0.35 12.55
5 72.00 0.17 12.56
1 360.0 0.04 12.57

in which k = 360/8 ; m = 4 sin (6/2) ; n = (1.440/8). sin (8/2)
(Source ; Nature Vol. 262 August.5.1976)

4.12  Width-over-depth ratio

In natural fluvial channels, width-over-depth is a fundamental parameter, the
reciprocal of which Gilbert (1914) used and called a form ratio, as depth-over-width, in his
studies, Every stream has a characteristic width in each section. Almost all natural river beds
are considerably wider than they are deep. In a larger river, if the width-over-depth ratio is
less than 14, a special, possibly erosive condition prevails. Small mountain streams and
narrow, canyon-bound rivers, in which the width-over-depth is less than 12 are erosive and
have three peculiarities: prevalent bed-rock in the channel and along the banks, steep
gradients, and coarse, scanty alluvia. In a large river running full, the value of this ratio is
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usually between 14 to 26. If the river is large and lies entirely in stream-brought alluviym
and that alluvium is fine, the value may be close to 20. In such rivers, there is also 3
correlation between the size of grain and the cross-sectional outline. Where much of the
alluvium 15 coarse and therefore carried close to (and on) the bottom, the bed is flat and
broad. Where most or all of the alluvium is fine and carried well off the bottom, the bed i
gently concave across, and the depth somewhat greater in proportion.

Large ratios, that is, over 30, usually indicate a slowly progressive failure in the
carrying of sediments. Natural alluvial rivers in the normal high-flood condition in which
they generate their channel morphology have width-over-depth ratios of between 14 and 28
A river that has fallen to a low-water stage may have however, through decrease of depth,
a width-over-depth ratio of 40 or more. Thus there is a problem to find some central region
of balance, among width-over-depth values, between increasing and decreasing alluvial
conveyance.

For meandering rivers width-to-depth ratio is somewhat more complex because of the
asymmetric cross-sectional shape. Moreover, within a selected reach, series of asymmetric
and nearly symmetric cross-sections having different degrees of asymmetry can be expected.
The cross-sectional shape depend on their corresponding locations in the plan-form.
Therefore, width-to-depth ratio varies not only according with the width, but also varies with
the averaged-depth of the cross-section.

4.13 The determination of friction in a meandering river

The determination of friction in alluvial rivers to a meandering river is possible from
a knowledge of the similarities and differences between straight rivers and meanders (see
sub-sections 4.4-1 and 4.4-2). In this case dunes are assumed to be in local equilibrium.
From the calculations, if the bed material is assumed to have the same composition (ie.
ignoring the grain sorting which takes place in nature) and the same representative diameter
is used in the transport formula, the sediment transport capacities of a straight river and 3
meandering river are the same for the case that water surface slope in the meander is
measured along the downstream thalweg direction. It is, of course, different when the valley
slope is used as a measure for comparison. From this knowledge, the transverse bed slop
in 8 meandering rivers has a different cm-ss-sbr_::innﬂl shape than that of a straight river, bul
application of the friction analysis in alluvial rivers to a meandering river is justified when
the slope is measured along the downstream thalweg direction and mass flux is taken as the
responsible driver for the sediment transport of each strip across the width of a meander.

4.13-1 Shear stresses in channel bends

Secondary currents and curved flows cause shear stress distributions to differ from
those occasioned by straight flows. Sinuous channel flow is not uniform. The magnitude of
the shear stress is related to the geometric and flow variables for the channel. The loss of
energy and the stability of banks in open channels is also related 1o the distribution 2™
magnitude of the shear stress generated by the flow in the bend, In steady uniform flow, B
bottom shear stress is calculated by a very simple formula (r = p.g.R.I). However th¢
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correct value of the bed shear stress cannot be obtained unless the correct hydraulic radius
is used. In other words, the definite water depth for a certain condition is essential. In this
study, the local water depth, which is a function of space and time, can be predicted by the
simulation model starting with a constant Chézy roughness coefficient, Later, the actual
roughness coefficient is calculated by the procedure mentioned in sections 4.5 and 4.6. After

the roughness is updated, the flow field is automatically updated and the new bed shear stress
iz found.

4.13-2 Updating the sediment transport capacity

It is obvious that all transport formulae are based on an effective shear stress.
Therefore an updated shear stress will give a more accurate transport rate, and thereby bed

level changes can also be updated. In order to be able to simulate the bed topography in a
meandering river more accurately closer to nature, the shear stress values should be updated.

Figure 4.14 illustrates how the sediment transport rate would differ in both amount
and trend from the value that it would take if the roughness coefficient were determined
independently from the bed material property. The plane bed assumption, which makes the
calculation so much easier, is also not recommended. Using an averaged value of roughness
over the cross-section in the simulation is justified if the calculation of the roughness factor
is based on flow and bed material conditions and only the total sediment transport rate is of
interest.

However the use of a variable roughness is preferred for two-dimensional sediment
transport calculations. It is also preferred for the calibration of the model. In all simulations
it was necessary to tune the lateral flow distribution. This need is most probably related to
lateral variation of the alluvial roughness and secondary flow condition (Olesen, 1987). For
this purpose, the second improvement of the roughness factor is necessary (see Fig. 4.15(2)
and (b)).

4.14 The role of discharge

The discharge regime of the catchment upstream from a river cross-section itself
provides a fundamental independent control of the channel cross-sectional morphology. As
the discharge varies at an individual cross-section, changes occur in the water surface width,
mean flow depth and velocity and in other variables such as the water surface gradient, the
friction factor, and bed shear stress. Although all the calculations have been based on a
constant discharge so far, a variable discharge conditions can be simulated by using a
discharge hydrograph as input.

4.15  Analytical model for transverse bed slope in a river bend

A bed topography simulation model for a meandering river has been developed in
Chapter 3. As usual, a numerical model has its limitations, such as those of shallow water,
mildly sloping bank, mildly curved plan-form, etc. However, in this chapter the wider area
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of alluvial rivers, both straight and meandering is investigated with the least possible number
of constraints. In order to be able to do this, an analytical model is applied to calculate the
equilibrium transverse bed slope of a meandering river. Width-to-depth ratios of between 15
(ie. deep water rivers) and 0.1 (ie. unnatural rivers, just for study purpose) are calculated

using this analytical model,

The transverse distribution of depth can be obtained by either assuming a constant
transverse bed slope ( an assumption, supported by field data, by among others De Vriend
and Geldof 1983 : Dietrich and Smith 1983 ; Odgaard and Kennedy 1982 | and Thome et

al. 1983 ) such that the depth is given by

h E. R
B 1 - S _d — ] {q'.'d'
hd i 'hr { R: ] J
in which
h = local water depth
h, = water depth at the river axis
E = local radius of curvature

R, = radius of curvature at the river axis
S = transverse bed slope at the river axis

or by allowing for the transverse bed slope’s dependence on R (Odgaard 1986a), in which
case the depth variation is given by

h _. R
7 I:-R-r] {4.5)

in which, 8 = 5, (R/h,)

In order to calculate the transverse distribution of depth, the transverse bed slope has
to be known in advance. The transverse bed slope in a curved alluvial river (Zimmermann

& Kennedy, 1978) is given by:

_ (r+1) i e
w = 2n(n+2) R (s-1)gd (4.6)
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The quantity n can be estimated from the Darcy-Weisbach friction factor, f. The
equation (4.7) becomes

S omq L) B 4.8)
= &2{1+2Jf35;

The model of Odgaard, (1984) for the steady-state transverse bed slope in a fully-
developed alluvial channel bend can be descnibed by the equation

S, =480 Fd 2 4.9)

where S, = local transverse bed slope
o= Shield’s parameter
F, = densimetric particle Froude number
d = representative grain diameter
h = local water depth
R = local radius of curvature
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The analytical model mentioned above does not include the effects of flow ang

channel non-uniformities in the stream-wise direction, and is applicable only to fully-
developed flow in channels with constant curvature. However, it is reasonable to expect thay
it will yield acceptable estimates of the local transverse bed slope in channels that change
alignment gradually enough for the flow to be treated as quasi-uniform. The calculated

transverse bed slope and the ratio of river width-to-depth are shown in Fig. 4.30.

Transverse bed slopes calcutated by the analytical model
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4.16 Conclusions

The principle of maximizing the sediment transport capacity for straight and
meandering rivers is studied. This hypothesis is stated as follows : “for a particular water
discharge and slope, the width of the channel adjusts to maximise the sediment transport rale
" (White er al., 1982). Here, in this study, the principle is applied to the problem c-f
determining the plan shape of a river. A deterministic solution for channel roughness i3
applied and the unique water depth for a certain condition is calculated. The maximum
transport capacity (MTC) channel width for both straight and meandering rivers is then
calculated. Thereby the existence of the MTC state in meandering rivers is proven,

The following is a discussion of the principle of maximizing the sediment transport
capacity. This principle is involved in determining the plan shape of a river. Onishi et
al.(1976) claim that "a meandering channel can be more efficient than a straight one, in the
sense that a given water discharge can transport a larger sediment load and, for some channel
configurations and flow conditions, can require a similar energy gradient.” Thus they
postulate that the plan geometry of a river presents an attempt to maximize the transport rate.

This postulate that the plan geometry of a river presents an attempt to maximize the
transport rate, is however not complete. In fact the plan geometry of a river presents an
attempt to maximize the transport rate with an optimum river width. (See fig. 4.24) The
sediment transport rate increases as the width increases until the optimum width is reached
and, thereafter, the sediment transport rate decreases with increasing width, This can be
interpreted as an attempt by the river to transport its own maximum possible load under the
control of a given discharge, slope and the properties of bed materials,

Since discharge, slope and the properties of bed materials are fixed, the stable channel
width must be adjusted in order to achieve a stable condition in which a certain amount of
water and sediment can be transporied. As shown in figs. 4.31 and 4.32, a meandering
channel can be stable with a narrower width then a straight river for any given slope. This
implies that a river tends to meander in order to stabilise and to reduce its destructive
potential, including the bank erosion potential, which is a de-stabilising potential.

Therefore it does not follow that "a meandering channel can be more efficient than
a straight one, in the sense that a given waler discharge can transport a larger sediment load
and, for some channel configurations and flow conditions, can require a similar
gradient”. It can also be seen from the calculations that a straight river can transport :"'"”
sediment load than a meandering one for two cases. The first case is the sediment .
rate for different slopes when the widlh‘nf the straight and the meandering ﬁvmummspumn“
same (see Fig. 4.27). The second case 13 the sediment transport rate for different widths
when the ?ﬂ]lﬂ}r ﬂlﬂm for the Strﬂight and the mmndgﬁng rivers are the same (see Fi_E+ 4.32).
In this case the optimum river widths can be seen.
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4.16-1

4.16-2

Suggestions for further study

This study has assessed and applied exiting theories and has assembled them in an
appropriate manner into specific problem areas in order to get nearer to a solution. Some
interesting points for further study are suggested here:-

(1)

(<)

(1)

(2)

general conclusions should be defined for meandering rivers for various
sinuosity values, various bend angles, and various discharges. Some have been
done already and can serve as working examples for the remaining areas of
study.

the grain sorting effect is also attractive for further study. Sediment transport
per size fraction can be calculated by size fraction formulae and the
composition of the bed material can be changed as in nature. It will be
interesting to see the interaction between local roughness and the bed material

composition.

The relationship between this specific chapter and the river plan form
movement simulation model

The major deficiencies of the present mathematical model of niver flow have
been its failure to represent the dependence of friction factor on sediment
discharge or concentration and to include temperature and channel-curvature
effects, Natural rivers adjust their hydraulic roughness in their own ways.
Getting more insight into the physics and the ability to add more appropriate
friction factors will help the simulation one step nearer to a reasonable
prediction.

“The shear stress is calculated from local flow and roughness conditions. Local
shear stress is also calculated by dividing the river cross-section into a number
of strips. Therefore, the local bank shear stresses of the inner and outer banks
can be caleulated from the two outer-most strips correspondingly. However,
this is not really important for the case where the width-to-depth ratio is
greater than 15. Moreover, although the local shear stresses are estimated, the
critical bank shear stress is still unknown and indeed known not better than an
empirical relationship, such as 0.75 tumes the bed shear stress. Therefore
further research should be concentrated on both local and eritical bank shear

Stresses.
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“"Rivers af models af each ofher.”

5. RIVER PLAN-FORM MOVEMENT

£1 Introduction

Observations show that meanders tend to migrate. Their migration proceeds through
a shifting of the loops in the downstream direction and an a enlarging of the looped form.
At low sinuosities, bends that have a moderate rate of migration tend to have a relatively
regular shape. At high sinuosities, bends that are actively migrating downstream tend to show
a marked asymmetry in shape. In both cases the river plan-form is changing over time, The
factors affecting the river plan-form movement are numerous, but can be grouped under three
major headings, as the nature of water and sediment-mixed flow, the nature of the flexible-
boundary alluvial container and the interaction processes of these two major items.
Consequently, it is clear that the study of river plan-form movement should start out from
the geomorphology and be followed by the engineering fluviology, fluid dynamics, geology,
and sedimentology together with their supporting laboratory physics.

River studies are studies of variations in space and time which involve numerous
spatial and time scales. Because of the complexity of the phenomena, changes have to be
explained both inductively and deductively. Historically many scientists from different fields,
such as Hydraulic Engineers, Geographers, Geologists and Hydrologists, studied river
dynamics from different angles using different approaches. In Fig. 5.1, a cartoon due to
(Newson, M.D. and Leeks, G.1., 1987) illustrates the various approaches to river studies and
their corresponding spatial scales,

However, the results of the various approaches mentioned call for a new approach
which can explain the river plan-form movement observed by monitoring systems. For
example, the geomorphological approach of (Ferguson, 1976, 1979: abbreviated DPM,
standing for Disturbed Periodic Model for river meander) and (Howard and Knutson, 1984:
abbreviated as the HKM simulation model). In general, even with a variable bank resistance
introduced into the HKM model and a disturbance parameter introduced into the DPM
model, simulated streams show too great a regularity in meander size and shape (Howard and
Hemberger, 1991). Fig. 5.2 shows portions of the Red River, Minnesota, and a comparative
HKM simulation. The figure also shows the Smoky Hill River, Kansas, as compared to a
DPM stream. Similarly, as can be seen in Fig 5.3 that the predicted bank line of a
hypothetical river which is supposed to have an isotropic and homogeneous bed and bank
material, can be simulated by the present model. It can represent the growth of the plan-form
for an individual river bend. However the predictability of the model is still far from
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describing the real river situation. For taking the traditional reached-average approach, the
mathematical model is developed under the corresponding simplifications. These are just
three examples of the general shortcomings; the other approaches experience similar
difficulties. In general, the limitations of mathematical models are many and the range of
validity of the models is limited. Therefore a reasonable forecast of the future plan-form of
the river has not yel been realised successfully and is and remains a challenging topic.

GECMOAPHOLOOY

ERGINEERING

FLUID DYHAMICS

Ty
»
2

m LABCRATOAY
*-q,:hm PHYSICS

Fig. 5.1 A cartoon illustrating various stages followed in river studies, with a
taxonomy based upon the spatial scales of the processes studied

One of the basic reasons for these shortcomings may be that an insufficient attention
is given to the multiple scales of the processes involved in river morphology. Geologists and
geomorphologists approach the system from the larger scale down to the smaller scale if
lime. Meteorologists approach the system using a global scale in space but a meso-scale it
time. Hydraulic engineers approach the system starting from a micro scale in time (e-&
turbulence, eddy viscosity, etc.) and space, and1 fmm there proceed to larger scales.
Accordingly, the sysiem is studied by many specialists from many directions, and thes
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Fig. 5.2 Natural and simulated meandering streams
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Fig. 5.3 A simulated futere plan-form of a hypothetical river

frequently intercross. When the system is approached from the larger scales and solved
downward in the space scale, the initial smoothing effects cause errors. If the approach is
made from the opposite direction, the residual smoothing effects cause errors. As
Mosselman (1992) expressed this matter: The problem can only parly be ascribed to
limitations of data acquisition and computer capacity. Parts of the problem are of a more
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Sfundamental nature, refuring Laplace's (1814) idea thar a powerful intelligence knowing a]
Sundamenial laws of narure and all initial conditions would be able ro compute predictions
Jor an arbitrarily long period.

Despite all these difficulties, the present study is an attempt to make a predictive
system by putting together three aspects of river evolution (ie. geomorphology, fluvial
hydraulics and hydrodynamics) into a simulation model with the assistance of laboratory
physics, field observations and numerical methods. The present investigation starts from the
micro scale and proceeds to the larger scales by a process of integrating. The effects of
climate, lithology and geological activities are considered as given premises. Moreover, the
chaotic behaviour and some exceptional events are excluded.
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Fig. 5.4 Chart of mechanisms associated with channel shift of alluvial rivers

In Fig 5.4 a chart due to (Hasegawa, 1983) illustrates the interrelationships obtaining
among factors governing channel changes in alluvial rivers. The arrows indicate the
influences operating among various factors. The degree of association is expressed by the
thickness of the arrow. This is a fluvial-hydraulic approach and the present study is
concerned with identifying interrelationship orders among the factors,as related to the
intensities of the influences. The hydrodynamic standpoint for the present investigation has
been described in detail in Chapter 3.

Finally, a mathematical model is developed on the basis of the mechanisms associated

with the channel shift of alluvial rivers. The geomorphology of the river bank which is
considered in the present study, the bank erosion mechanisms and their derivations are
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presented in sections 5.3 and 5.4. The computational methods applied and proposed are
presented in sections 5.6, 5.7 and 5.10. The results are also discussed in section 5.12.

5.2  River parameters

The geometrical configuration of a river is defined by its cross-sectional geometry,
plan view, and longitudinal profile. The documented river distances usually take account of
the river regulation and start from a point at the mouth and proceed from there upstream.
The length scale of the river is usually introduced through river parameters and their ratios.

The cross-sectional dimensions and the asymmetries are mostly correlated with
representative dimensions in meandering alluvial rivers. The scatter of the (weak)
relationships between width and depth has been found to be at least partly related to the
asymmetry of the cross-sectional shape. On the average, the distance through which the cross
section is essentially symmetrical is only about one-tenth of the wave length. Nevertheless,
the width-to-depth ratio is an essential parameter in the present investigation. Therefore the
average width-to-depth ratio for an asymmetric cross-section is presented in Appendix-C.

: Width of meander belt
B by s byt Heander smplitude
¢ Heander wavelenghh
: Widlh of valley Meor
i Riwer lenghh between & snd B
: Walley length Bebween & and B
¢ Distance befween & and B Ibesling )

Fig. 5.5 Nomenclature of a typical meander

The river evolution (sinuosity) is expressed in terms of the ratio between the straight
line *C* from source to mouth, as deduced from the length of the river '’ and divided by
‘C* (Fig. 5.5). It should be noted that some natural meandering streams appear to have short
meanders superimposed upon longer meanders, often generating the compound or cumuliform
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meander forms noted by (Brice, 1974) and (Hickin, 1974). Therefore river evolution s
defined al three levels, such as course evolution, valley evolution and river evolution. The
sinuosity of the plan-form shape at the reach level is defined as the ratio of the distance along
the channel to the distance joining the ends of the path, Occasionally the straight line distance
may nol coincide with down-valley direction and gradient, especially if the plan-form is
confined within valley bends. Often it is justified to assume that at the within-reach level the
valley is straight. Fig.5.5 depicts the river parameters which are used in the present study.

The longitudinal profile of the river system is mostly, and certainly on average,
concave. The slope of the profile is steeper at the source and milder towards the mouth, On
a reach basis, however, the slope can be considered constant,

£.3  Bank erosion mechanisms

River bank erosion is a complex phenomenon. The bank erosion mechanism can be
divided into two categories (Thorne, 1982; Osman, 1985). One is the entrainment of the
individual particles (hereafier called fluvial entrainment) and the other is the mass failure,
such as sliding failures or other types of geotechnical failures that occur under adverse
condition in soil. These two cases are considered individually for convenience, but the
strength of the interaction that can occur between these two erosion processes is fully
appreciated. Fluvial processes appear to be the most important in the case of non-cohesive
banks, but it is particular combinations of processes that prove to be most effective in the
case of cohesive banks (Hasegawa, 1989). The balance between the rate of supply of bank
sediment into the bank toe, and the rate of removal of the same material from the toe by
fluvial entrainment, is the dominating factor in controlling the rate of retreat of banks of all

types (Thorne, 1982).

531 Fluvial entrainment

This is a time-dependent erosion, proceeding with a rate that is decreasing or
increasing accorded to the flow regulation conditions for a specific bank. The erosion rate
depends on a number of factors, such as shear stress, velocities, secondary flow, composition
and properties of the soil, dispersion of the soil, water quality, bank geometry, presence of
vegetation cover and density of big trees, and (other) natural and man-made effects.

Shear stress variations along the banks are very important factors, Spatially
oscillating flow and bed deformation provide the shear stress variation. There are several
concepts for the shear stress which controls the erosion process. The effective siress concep!
appears to be the most popular one. The bed shear stress resultant direction neither coincides
with the water flow direction nor the sediment transport direction in the river bends. The
mathematical expression for the bed shear stress rcsultan_t direction and sediment transport
direction has been discussed earlier, in Chapter 3. A very important problem is the definition
of a critical shear stress for river banks consisting of cohesive soils. When the bank material
properties are concerned, the critical shear stress of the bank is further affected by such
variables as the sodium adsorption ratio, the pore fluid salt concentration, and the dielectric

dispersion.
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Velocities near the bank and secondary flow velocities play a vital role in the process
of bank erosion, because the flow velocity and acceleration provide the drag force and flow
mass which carry the sediment products. Their importance is also very obvious in all the
sediment transport formulae. The near bank excess velocity is used as a direct measurement
of the rate of fluvial entrainment, a practice initiated by Tkeda er al. 1981. In the river bends,
the secondary flow is generated by channel curvature (sinuosity). The vertical distribution
of the main flow takes on the form of a spiral, which in its turn induces a pronounced bed
slope perpendicular to the main flow direction. The pronounced bed topography and flow
variations cause spatial variations of the grain size of the river bed and near-bank bed
deformation; it thus produces bank erosion and a changing of the curvature.

The stability of the bank depends on the type of the soil and its composition and
compaction. Because of the compaction or composition, there may be variations in the soil
shear strength. Soil shear strength is proportional to the cohesion and the angle of friction.
Dispersion of the soil is a major concern in the case of cohesive soil, while most river banks
are predominantly cohesive. Usually, three types of sediment structures are defined in
cohesive soil, depending on the forces of attraction and repulsion occurring during
sedimentation: these are known as the salt flocculation structure, the non-salt flocculation
structure, and the disperse structure (Lambe and Whittman, 1969; Hough, 1957; Taylor,
1948). The cohesive property is determined mainly by physio-chemical interparticle forces
that result from residual electrical charges at the surfaces of clay mineral sheets. These forces
depend on temperature and the electro-chemical properties of the bank soils.

For non-cohesive soils, the properties having the greatest significance for soil erosion
are the dispersion ratio, the ratio of colloid to moisture equivalent, and the silica-sesquioxide
ratio (Middleton, 1930).

The grain size distribution of the fluvial sediment also controls the fluvial
entrainment. Extensive particle size analyses of bed and bank material samples from
perennial streams of the Missouri River basin (Osterkamp and Wiseman, 1980) suggested that
the formation of a stable alluvial bank is dependent on the availability and sorting of specific
size ranges of sediment, They concluded that relatively stable banks are deficient in 0.35 o
1.3 mm diameter sand grains, regardiess of channel gradient or basin characteristics. This
implies that, if the total sediment load of a river is predominantly medium- to coarse-grained
sand, a wide, unstable channel will result because the fine (less than 0.35 mm) and coarse
{greater than 1,3 mm) sizes required for bank stability are not available. It can be noted that
the grain size distribution of the bed and bank material affect the stability of the river in two
ways. The first one has already been discussed in chapter 4, as it concerned the relation
between total sediment transport and channel width. The second is the particular combination
of grain sizes which reinforce the bank stability,

Water quality is related to the type of bank soil. As cohesive materials are affected
by the electrochemical properties of the eroding fluid, water quality strongly influences the
erodibility of the banks. Most of the flume experiments use distilled water to find the
erodibility and then check with river water | researchers have concluded that the influence
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of the water quality is significant (Arulanandan, er al., 1980). On the other hand, the water
quality is heavily affected by vegetation.

The effect of vegetation and intensity of cover of big trees can be taken into somg
account through a coefficient defined in (Pizzuto and Meckelnburg, 1989). Eﬁs!‘: and shrubg
almost always increase the stability of the bank, The existence of trees can both increase ang
decrease the bank erosion rate. Detailed study of this factor and a thorough qualitative
description of how type, age, health, and density of trees influence bank stability is given by
(Thomne and Osman, 1988). The lateral migration of the Genesee river, New York, was
studied by (Beck, S. et al., 1980). The lateral migration rate in farmland was found to be
130% faster than that in forested areas. In this case, the existence of trees decreases the bank
erosion rate,

5.3-2 Mass failure

As mentioned above, this type of failure is constituted by sliding failures or other
types of geotechnical failures that occur under adverse condition in soils. It depends on the
balance of forces on the most critical potential failure surfaces, The factors and forces which
cause mass failure are well recognized. These factors are bulk ground-water flow, ground-
water seepage, bank soil structure, stratigraphy of the bank, near-bank bed degradation, and
sudden drawdown of the water level in the river. Most of the work done in this area treats
the phenomenon as a soil mechanics problem. The principles used in the stability and analysis
of earth embankments and structures are thereby used to analyze bank stability and erosion,

One of the main causes is the removal of particles at the toe, which makes the bank
behaves as a cantilever. Later the cantilever will collapse under gravity. But there are als
other causes, such as the development of tension cracks and their filling with water (Springer
et. al., 1985). Actually, failure may also start from a temperature effect: when a bank-
surface is exposed to a considerable daily range of temperature, as in arid and semi-arid
regions the expansion which occurs during the day and the contraction at night, constantly
repeated, may results in the opening of many small cracks. The decomposition of the bank
sonl and its disintegration occur when water enters into these cracks. This may be very
important for regions where high day and low night temperatures are prevalent.

The failures of river bank of the move massive type takes the form of slope failures

(ranging from progressive, continuous failure by creep to almost-instantaneous, oOf
catastrophic shear failure) of the bank.
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£33 Feedback processes

The bank erosion mechanism is also a circular process. The causes affect the bank
erosion and bank erosion products affect the variation of the intensity of the causes. This can
be seen as follows. Flow exerts shear stresses that remove particles from the banks and the
bed: it shapes the near-bank bed topography. The near-bank bed topography affects bank
erosion in two ways, namely, directly and indirectly. The first case arises because the total
bank height is itself an important parameter for bank stability: an increase in bank height
decreases stability. The second indirect way arises because the topography influences flow
velocities in the bank region and hence the shear stresses. For example, let us suppose that
the river banks are being eroded and bank erosion products are being released into the flow.,
The bank-erosion products participate in the sediment transport process. The sediment
imbalance, defined as the difference between sediment transport capacity and the actual
sediment flux, is a distinct factor affecting the channel migration rate. A correlation between
migration rates and sediment imbalance was determined by Murphey Rohrer (1983). Neil
(1987) estimates the limits of channel migration from sediment transport rates. A case study
described by (Neil, 1983) of a bend migration in the Tanana River (Alaska) is there given
in evidence: in this case there was a more-or-less complete exchange of bed load, all
incoming bed load being deposited on the inner point-bar and being replaced by material
derived from outer-bank erosion. This mechanism results in an extremely high migration
rate, of about 50 m/year. Humphrey (1978) also reported some enhancement of migration
rates downstream of meander cutoffs, which is ascribed to a local increase in sediment
supply. Therefore these circular influences cause river bank erosion to proceed in a faster
and more complicated manner. Thus this can be supposed to provide a positive feedback to
the erosion system.

The other circular process can be regarded as one that provides a negative feed-back
system, arising from the bank surface conditions, Erosion is a surface phenomenon which
refers to the area exposed to erosive water flow, Two surface conditions are relevant. The
first condition, involving as it does the interaction between bank materials and the eroding
fluid, may alter the bank erosion resistance by an order of magnitude. The instantaneous
physicochemical composition of the surface material is uniquely related to stability
(Lambermont and Lebon, 1978). The second surface condition involves the physical
configuration of the material surface: cohesive materials have rigid boundaries and the
roughness of the boundary material may induce sufficient form roughness to affect near-
surface conditions. This aspect of the stability of bank soil materials has not been fully
explored because of the extreme difficulty of quantifying and interpreting turbulent velocity
fluctuations in close proximity to rough surfaces.

54 Bank erosion rate

The bank erosion rate can be estimated qualitatively from the hydrodynamic forces,
bank characteristics (such as geometry and vegetation cover), bank material type (such as silt
and clay contents, organic matter content, bank soil stratigraphy and chemical
characteristics), and erodibility of the s0il, However, mathematical formulae account for only
some of the parameters quantitatively, and not all. The completion of the set of mathematical
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expressions involves the selection of dominant factors, while neglecting minor factors, ang
the introduction of simplifications due to the inadequate state of knowledge of interaction
effects, and by no means are these neglected parameters negligible, Theoretical derivations
of bank erosion rates are presented in section 5.4-1.

On the other hand there are many empirical relationships which can be used 1
estimate the bank erosion rate. These relationships, proposed by many authors, give again
the impression that the bank erosion rate is estimated primarily on a basis of personal
experience, as this is influenced by an own specialization, such as may be
geomorphologically biased or hydrodynamically biased. A summary of these bank erosion
rate relationships leads one to think about their relevant utilities. For this reason, the mou
empirical relationships which are used in this study are presented under four categories
corresponding to their governing parameters, as shown in section 5.4-2.

5.4-1 Theoretical derivation of the present study

A derivation has been made of linearised bank erosion equation, and some simple
computer programs have been made as listed in Appendix-C and tested in order to check
whether their formulations were consistent with measured values given in the standard
references. Empirical relationships of bank erosion rate were used in order to check the
guantity of bank erosion rate so provided. Very few field data are available and only some
of these have been compared with calculated values. The verifications are presented in
section 3.5.

On the side of the theoretical formulation there are two possibilities to estimate the
bank erosion rate. The first considers the balance of forces on the moving grain, The
derivation and the mathematical expression can be found in the reference (Hirano, 1973). The
second considers the net sediment balance in a certain cross-section as an amount of laterd
bank erosion volume. The hypothesis is originated by Hasegawa, 1987. This type of
calculation emphasized on unit length of the cross-section and sediment volume balance is
made along the transverse direction. Therefore this formulation is appropriate only when the
river reach has attained certain equilibrium. The mathematical expression for the bank
erosion rate appears as following.

We use the form

= 1

= ""'_Jd " 1
: (I-N(H+ a0, + ) [ﬂj = @ - q, ()] (5.1)
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for the second term

m 04, aq,
L[" 55 dn =g, ) = [ 52 (a, - m) - g, () @3

Fig. 5.6 Definition sketch

and this becomes

riem = 2 | K ’n:ﬂ'- - Ngd® (r, -7 | (- m)
ds g (5.3)
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Here 7. is expressed as follows:
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Using binomial series and neglecting higher order terms provides:
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where
| 3
L e 5.9
(—=-Dgd
fi]
in which

3 = bank erosion rate
C, = local resistance coefficient

H, Hy; = local mean water depth
s = critical shear stress parameter
= void ratio
= sediment discharge/ unit width in the s s direction
= sediment discharge/ unit width in the n direction
= bank height
= transverse direction coordinate
= longitudinal direction coordinate ; see Fig. (3.6).

“3zee >

5.4-2 The hypothesis of near-bank velocity excess

Tkeda er al., 1981 have suggested the following equation:
E=EW, - (5.10)

in which
£ = the rate of bank migration m/s
U, = the velocity near the bank m/s
U = reach-averaged velocity m/s
E = a dimensionless erosion coefficient

Alongside this, a scour parameter A has been related to the local bed geometry
through the following equation, also presented by Tkeda er al. (1981).

m=-AHCh (5.11)

where
m = local bed elevation
C = local bend curvature
H = reach-averaged depth
n = the eross-channel coordinate (n is orthogonal to )
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e

The cross channel coordinate 'n' is zero at the channel centre and the datem for ‘m'
is the bed elevation al the channel centre.
In this connection, reference should be made to the models of Parker (1981, 1983

and Odgaard (1987),
£.4-3 Empirical relationships

The bank erosion rate models which are used in the present study can be categorised
in four groups which are base on the differentiation between the governing parameters used
to express the rate. In the first group, the bank erosion rate is mainly determined by the plan
geometry and cross-sectional geometry of the river. In the second group, it is mainly
concerned with the bank and bed material properties of the river. In the third group, it is
calculated as a function of the catchment area. In the last group, the bank erosion rate can
be estimated as a function of flow velocity. Various models are described briefly and bank
erosion rate models are developed as individual modules. These modules can be attached o
the main simulation program in accordance with the specific requirement of the simulation
and can be shifted around as needed. Each module should be chosen with a concemn for the
physical balance.

* Bank erosion rate equations group (1)
This is mainly concerned with the plan geometry and cross-sectional geometry of the
river. We then have the following formulations:
# Brice, 1982 model:
Rate of bank erosion increases with increasing channel width.
The relationships are as follow:

(1) 0.1 miyr ...........fora 10 meter wide channel
(2) 9.0 miyr ........... for a 600 meter wide channel

* Hicken and Nanson, 1975 ; Nanson and Hicken, 1983, model:

These suggest that

-
£ =20 ' (5.12)

when {B/R, < 0.32}
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209 « (K (5.13)
=02+ (59

when {B/R_ ) 0.32}

in which
£ = erosion rate (m/yr)
B = channel width (m) WRTC

R, = radius of curvature of the channel centre line

Wat l:!.'.. ree ;'*'-'-"' ?-EEF
Teginpg L oglzp
* Bank erosion rate equations group (2)

This group is mainly concerned with the bank and bed material properties of the

river. 'We next consider the formulation of Ariathurai and Arulanandan (1978) which was
applied to a cohesive soil with 30% illite. In this case,

£=0 for 836, (5.14)

E=M(IZ -1 for 8 =8 (5.15)
T

(4

where
M= {0003 <M < 0.03) gm/cm’/min; an erosion rate constant

Modification of the unit of £ to suit the unit which is expected in the simulation model
£ can be determined as follows:

M & Lem
E'T“‘E {?E 1) (5.16)

{or)
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L3

in which
s = relative density of the soil
e = vpids ratio of the material
E=mis

Therefore equation (5. 16) is taken excluding voids in the matenial and equation (5.17)
is taken including voids in the material.

* Partheniades, (1963) model

Erosion rate for mud, generally, expressed as

: for n,>1, (5.18)

in which M, a coefficient ( in mass per unit area and time), is a material ‘constant’
depending on mineral composition, organic material content, salinity etc. Reported values
are in the range of M = 0.00001 to 0.0005 Kg/m’.s for soft natural muds.

& Parchure and Mehta (1985) model:

Their model is expressed by a relationship of the form:
£ = E, 2™ for 1,>r1, (5.19)

in which the E, value (in Kg/m’.s) is defined as the value for 7, = r, (at the surface z = 0)
and can be determined by extrapolation from a plot of E against r,. The E, values are in the
range of 0.00001 to 0.001 (Km/m’.5) for kaolinite and natural mud in saline water, The &
coefficient is in the range of § to 20 (m/N™).
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« Bank erosion rate equation group(3)

This is calculated as a function of the catchment area.

» Hook (1980) model:

E = (.0245 404 (5.20)

in which, E = Mean erosion rate m/yr
A = Catchment area Km*

The range of the data started from 0.05 m/year for a drainage area of 3 Km’ and
continued up to 80O m/yr for a drainage area of 1000,000 Kn?. Hooke, (1980) obtained a
regression relation between the migration rate of a meander loop and the catchment area by
using her own data as well as those of others. An approximate relation that was obtained of
bank erosion rate £ to the square root of the catchment area A implies that £ should increase
in proportion to the channel width W, because the square root of A can be expected 10 be
in proportion to W, This suggests that bank erosion rates are similar for basins of all sizes
if normalized in terms of increase in channel width per year.

* Bank erosion rate equations group {(4)

In this last group bank erosion rate can be estimated from the function of flow
velocity.

* Wiggert and Contrator (1969) model:

E =025 174 (3.21)

in which £ = erosion rate (ton/ft/day)
U = mean velocity (ft/s)
Note that no bank soil properties are considered.
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* Pizzuto and Meckelnburg (1989) model:

This model was based on the hypothesis that erosion rates are controlled primarily by
the near-bank velocity. This near-bank velocity was measured at nine survey sites and a
statistical analysis of the relationship between bank erosion rate and near-bank velocity was
made over a two years period. For a long-term analysis, which considered the period from
1937 to 1980, no velocity measurements were available for the bend; the model of Parker
et al. (1983) was consequently used here in order to estimate the near-bank velocities and the
model of Ikeda et al. {1981) was used in order to estimate the scour parameter A,

The result of the study was a linear bank erosion equation which read:
£ =2.62 (10" + 2,15 (10% U, (5.22)

with again
£ = bank erosion rate m/s
u,=U,-U _
U, near-bank velocity m/s
u reach averaged velocity m/s

[

In addition, the rates of bank migration were reduced where the density of (silver
maple) trees was high: it was observed that the size and position of the trees tended to protect
the bank from erosion. The equation for areal density of the trees along the bend was
expressed as:

NZ
3

4.5 L

(3.23)

T = d!

L = length of the bank segment
d = diameter of the tree, 1
N = total number of trees in the segment

When the effect of large trees near the river bank was included, equation (5.22) took the
form

In(g)= 3.25 + 3.06 U, - 44.6 T | (5.24)
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Therefore for the river which has no tree along the bank, then T becomes zero and
egn. (5.24) will be equal to eqn.(5.22). Nevertheless, egns. (5.22) and (5.24) obviously
cannot be applied casvally to other rivers. The excellent correlation obtained between near-
bank velocity and bank erosion rate was partly a result of a fact that the bank sediments were
relatively uniform and cohesive all the way down to the bed, The main characteristics of the
study reach are shown in table (5.1).

Table 5.1 Characteristics of the river

Variable Value Elimen-si.un
Mean annual discharge | 11.1 m*/s
Bank-full discharge 151.1 m¥/s
Recurrence interval of | 2.4 year
bank-full discharge
Bank-full width 42.0 m
Bank-full average depth | 2.6 m
Bank-full mean velocity | 1.37 m/s
Bank-full friction factor | 0.0135 -
Bed sediment Dy, 69.0 mm
Bed sediment Dy, 30.0 mm
Bed sediment Dy, 7.6 mm
Sinuosity 1.15 i
_Joomo -

It then appears that this model can be applied for cohesive bank and gravel bed rivers,
which could have similar characteristics to these shown in Table (5.1).
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= Dickinson and Scott, (1979) model:

Stream bank erosion rate in em/yr

0,50
E=200" @Y - 175" (5.25)

in which I = 0.0097 (5% hydraulic stability index
§ = energy slope of the river
I, = soil erodibility factor
I, = agricultural intensity index

5.5 Verification
5.5-1 Case 1: verification with empirical formulae

Why should we attempt to verify our model with empirical formulae at all, since an
empirical formula is only valid for the circumstances under which it has been developed.
Certainly such ‘validation' can only constitutes what may be called isolated approaches.
However, to the extent that we have constructed a unified theory and corresponding model,
it should be possible to compare the predictions of this model with those of the empirical
models for the particular circumstances concerned. Our model then gives us a number of
‘answers’ to the questions posed and solved by the empirical models. This can be done on
a module-by-module basis but not by relating certain combinations of modules. Limitations
and applicability of the model is that the model is applicable but limited essentially to alluvial
rivers of the homogeneous and isotropic material lype.

5,52 (Case 2: verification with Meld data from Rillito Creek

Rillito creek is a stream representative of water courses throughout the Basin and
Range Province of the interior southwestern United States and northwest Mexico, The Rillito
flows 18.4 Km {11.5 mile) through an alluvium filled fault-block valley to its junction with
the region's major stream, the Santa Cruz River, at an elevation of 670 m.

At its mouth the Rillito drains an area of approximately 2378 Km? that is dominated
by porous soils. The vegetation cover consists primarily of Arizona upland subdivisiod
vegetation, mostly saguaro cactus, palo verde trees, and creosote bushes. The annual rainfall
over most of the basin is 20-40 cm (8-16 inches), according to data from Graf, 1984, The
annual flood series for Rillito Creck is shown in Fig. 5.8.
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Fig. 5.7 Location map of the Rillito creek (Data; U.S. Geological survey).
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Fig. 5.8 Annual flood series for Rillito Creek (Data ; U.S. Geological Survey).
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A review of historical channel locations along the Rillito Creek indicates that an
unstable period extended from 1871 (and probably earlier) to about 1937. Instability has noy
been constant through time or space; see figs 5.9 and 5.10. Prior to 1890 the channel wag
flowing on an upper surface of alluvial fill, but in the period after 1890 the Santa Cruz River
became entrenched through a series of floods (Hastings, 1958). Headward erosion of the
arroyo from the major stream resulted in the entrenchment of Rillito Creek in severa
reaches, converting it from a shallow marshy stream to an arroyo. Once this conversion was
completed (by about 1937) instability was manifested primarily by bank erosion (Graf, 1984),
Smith, 1910, attributed the entrenchment of Rillito Creek to overgrazing and haymaking
associated with an army post established at the junction of Pantano Wash and Tanque Verde
Creck in 1872, He reported a major flood in 1881 but no channel instability until the 1890,
The significance of these events is that after entrenchment (especially in the lower reach) the
arroyo is so large that it can contain even the 500-year flood (U.5. Army Corps of
Engineers, Los Angeles District Office, unpublished overflow calculations, 1983; requoted
from Graf, 1984). Generally the 1871-1937 maps reveal more instability than the 1937-1973
maps. Lower Rillito Creek has consistently been more unstable than the upper and middle
reaches. Extensive bank protection efforts have been successful in stabilizing the middle and
upper reaches since 1960. All three reaches have shown decreasing instability over the 107-
year period, probably in response to generally smaller annual floods since 1941 as shown in
fig. 5.8. Floods in 1983 interrupted the general trend.

The upper and middle reaches have modest degrees of locational instability (Figs. 5.9

and 5.10), while the lower reach migrated over substantial areas (Fig. 5.11). A comparison
of Figs. 5.9, 5.10 and 5.11 shows the spatial variation in instability among the reaches.
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Fig. 5.9

Historical channel locations along upper Rillito creek (Data; Graf, 1984).
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Fig. 5.10

Historical channel locations along lower Rillito creek (Data; Graf, 1984).
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Fig. 5.11 Historical channel locations along lower Rillito creek (Data; Graf, 1984).

As we see in figures (5.8) to (5.11), the channel shift of Rillito creek as shown in Fig
(5.11) is nearly impossible to tackle. Therefore the upper Rillito creek as shown in Fig 5.9
is chosen to test the bank erosion rate for the period of 1954 to 1960, However the observed
channel shift from the figure and the simulated channel shift are not compatible. Because the
simulated channel shift is too regular for the natural nver shift. It can be concluded here that
the present model give the result of shift no where near from the actual situation. On the
other hand, the bank erosion rate of the river on a-station-geometry is satisfactory. The
results are shown in Table 5.2.
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Table 5.2 Verification of the bank erosion rate model
i Uy (m/s) £~ =E;'U, (m/s) AB(m)/ddays AB(m)/11days
4 0.1385133 B.006 * 10" +0.02767 +13.834
5 | 01862911 10,767 * 10* +0.03721 +18.605
& 0.22166 1.28119 * 107 +0.04428 +22.139
T 0.24678 1.42638 * 107 +0.04930 +24.648
| 0.26615 1.53835 * 107 +0.053165 +26.583 l
9 0.2799 1.6178 * 107 +0.05591 +27.956
10 | 0.2914 1.68429 * 107 +0.05821 +29.1045
11 | 0.29983 1.7330 * 107 +0.059892 +29.946
12 | 0.30625 1.77012 * 107 +0.061175 +30.588
13 | 0.31245 1.80596 * 107 +0.062414 +31.207
14 | 0.31584 1.82555 %7 +0.06309 +31.546
15 | 031164 1.80127 = +0.06225 +31.126
16 | 0.34560 1.99800 * 107 +0,06905 +34.527
17 | 0.19171 1.10808 * 1077 +0.03830 +19.148
18 | D.044167 2.55285 = 10" +0L008323 +4.4113
19 | 0.0406 2.34668 * 10" +0.008110 +4.055
20 | -0.02074 -1.1988 = 10° -0.004143 -2.071
21 | -0.059805 -3.4567 * 10° -0.011946 5.973
22 | 007755 -4, 4824 * 10° -0.01549 -7.746
23 | -0.09433 -5.4523 * 10* -0.018843 -0.4727 _I
24 | -0.11632 £.723 * 10° -0.02323 11.617
25 | 0.1273197 -7.3591 = 10* -0.02543 -12.716
26 | -0.128748 -7.4416 * 10°* 0.02572 -12.859
27 | 0.123868 -7.1596 * 10°* -0.02474 -12.372
28 | 0.11740 -6.78572 * 107" -0.02345 11726
29 | 0.112664 46.51198 * 10" -0.022505 -11.753
30 | -0.108916 -6.2953 * 10 -0.02176 -10,878 I
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"B = | C; X’LLE.; The mathematical model is simulated for the river width of 66 m, Al
me step 4 days is used, the number of time steps needed for the equilibrium is 254 time
steps. From field data E = 5.78 * 107 m/s is observed, Therefore it can be seen from
column 3 that the rate is not very much differ from the observed rate and the calculation is
acceptable although it is not identical,

5.6 Modular structure developments of the bank erosion modules

The reason for developing various modules is that rivers are very dynamic and each
river has its own characteristics, so that if at all possible the best way to calculate the bank
erosion rate 15 to consider each river individually. This is most conveniently done by
dividing the description of the river-bank system into a number of independent parts. The
modules are as following.

1. BANKI1.FOR ; Anathurai and Arulanandan Model, 1978,
Based on the flume studies.
Cohesive material with 30% illite.

2. BANK2.FOR ; Hirano Model, 1973.
Based on hydrodynamic forces.
Derivation has been made by myself and adding some
different linearizations than the original paper.
Please see derivations.

3. BANK3.FOR ; Hasegawa Model, 1987,
Based on hydrodynamic forces.
Derivation has been made by myself and adding some
different linearizations than the original paper.
Please see derivations. Shear stress ratio has been
changed.

4. BANK4.FOR ; Wiggert and Contraior Model, 1969,
Either cohesive or non-cohesive material.

£ = 0.25 L*® (3.26)

in which £ = bank erosion rate (ton/ft-day)
U = mean flow velocity (m/s)

5. BANKS.FOR : Hicken and Nanson Model, 1975,
Manson and Hicken Model, 1983,
in which W = channel width
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20X W <03
R, R,
R W =5

- L3

£ =02 W ® =0.32

R, = the radius of curvature of the channel centre line

£ = bank erosion rate (m/year)

6. BANKGO.FOR ; Hooke Model, 1980,
Based on the field observations.

in which A = Catchment area in km?
£ = bank erosion rate (m/year)
Note : Range of the bank erosion rate 0.05 to 800 (m/yr) for the range of drainage area }
to 1000,000 km?

7. BANK7.FOR ; Dickinson and Scott Model, 1979
Eom 2w 107® (@811 + 175080 (5.29)
in which
I=00097 « §-0 (5.30)
1 = hydraulic stability index
S = niver bed slope
1, = soil erodibility factor

I, = agricultural intensity index
¢ = bank erosion rate (cm/year)

8. BANKE.FOR : Brice Model, 1982
Empirical relationship only.

£ = 0.1 mlyr when  width = 10 meter
£ =9.0mlyr when  width = 600 meter

in which
£ = bank erosion rate (m/year)
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N

0. BANK9.FOR ; lkeda et. al Model, 108]

E=E « (U - ) (5.31)

in which
E = erosion constant
U, = near-bank depth average mean velocity (m/s)
U = reach-averaged mean velocity at bank-full discharge (m/s)
£ = bank erosion rate (m/s)

This model is directly attached to the subroutine of the bank line displacement.

10. BANK10.FOR ; Parker Model, 1983

£ = E, [1+e(X - 1]U, T 6.3

in which
E; = primary coefficient of bank erosion
e = secondary coefficient of bank erosion
(X-1) = the reduction in reach-average velocity with increasing sinuosity
U, = near bank excess velocity
E = bank erosion rate (m/s)

In the dimensionless form the equation is reduced to

W
£ B Ao (3.33)

] 5

in which
E, = coefficient of bank erosion
A = an order-one scour factor parameterizing the role of secondary
currents
U, = near bank excess velocity (m/s)
W = width of the river
R. = radius of curvature of the channel centre line
£ = bank erosion rate (m/s)

This model is also directly attached to the subroutine of the bank line displacement.
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11. The conceptual models ;

(a) Middleton Model, 1930:  Bank erosion rate is a function of dispersion ratio, the
ratioc of colloid to moisture equivalent, and
silica-sesquioxide ratio. However  mathematical
expression is not available. The concept is drawn from
the study of three types each of cohesive and
non-cohesive soils.

(b) Schumm Maodel, 1960: Bank erosion rate is a function of the percentage of sil:
and clay in the parameter of stable river cross-section.
The concept is drawn from the study of 60 rivers
Mathematical expression is not available.

(c) Partheniades, 1965: Based on the flume experiments with two different clay
beds. On the contrary of many other theories that bank
erosion rate is independent of the suspended sedimen
concentration, In his flume experiments, 60% of the
eroded material from the bank is going to be suspended
sediment load. Mathematical expression is not available.

(d) Arulanandon, Gillogley and Tully, 1980
A quantitative method to predict the critical shear stress
and the rate of bank erosion was based on the flume
experiments for the cohesive material. 42 numbers of
soil samples and river water samples from all over the
U.S.A.

N,
SAR = —— (5.34)

JO.5(C,+M )

in which SAR = Sodium adsorption ratio
MNa = measure of Sodium ion
Ca = measure of Calcium ion
Mg = measure of Magnesium ion

Bark erosion rate = f{ SAR, dielectric dispersion of the soil)
Although this is a quantitative method, it is still hard to get the accurate analysis fof
both soil and water qualities. Therefore no further development is made for mathematical

model.
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5.7  Tentative Grouping of sites for different erosion types

The analysis and observations have shown that there is considerable variation in the
types of erosion and the factors which influence the processes, even within a reach
experiencing similar rainfall, discharge and temperature conditions. It is likely thal sediment
composition is a major factor affecting the spatial distribution of erosion and its relationship
to the erosion processes, although, in general, banks with higher ¢lay composition appear to
be more resistant and experience less slumping. The sites may nevertheless be divided into
four types on the basis of Hooke's (1979) analyses and observations, as follows:

(I)  Sites where erosion is driven mostly by corrosion at high flow and the
magnitude of the peak discharge is of primary importance.

{2) Sites possibly of coarser, sandy material, where soil moisture conditions are
of greatest significance and erosion is usually initiated by a collapse of
material.

(3) Sites where again soil moisture conditions are important but the amount of
erosion is low, the material being highly resistant, so that high flows are also
necessary for erosion to occur,

(4)  Sites where erosion is infrequent and takes place by a sudden excavation of
lobes at high flows.

Hence these aspects also should be introduced together with those of section 5.4-1
when the mathematical model is presented in section 5.9,

5B The selection of the bank erosion rate module

Bank materials are considered that are composed of both cohesive and granular
material. Corresponding partly to this, it is assumed that, after being eroded, some part of
the cohesive material will be transported as wash load and the rest will be bed load transport
driven by the flow. The sediment conlinuity equation is expressed in one-dimensional and
two-dimensional forms so as to account for the mass which has been eroded from the bank.

The physical processes which are the result of river bank erosion are presented, Since
sediment transport is directly influenced by bank erosion products, it is the fine particles that
will be transported as wash load after being eroded with the rest being transported as bed
load. If a distinction is not made between wash load and bed load, the sediment transport due
to bank erosion may easily be wrongly estimated. The noticeable manner of bank erosion is
when particles are plucked from the top of the bank by the shear stress of the flowing water,
causing the slope to decrease, which in turn decreases the shear stress (Stevens, 1989).
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In the process of simulating the river bank-line position, the hypothesis of near-bank
velocity excess, i.e. a hydrodynamic aspect is considered initially. However, bank erosion
is not only dependent on the flow conditions, but also on the geomorphology of the river
banks. Therefore the selection of the most appropriate module, corresponding to the specific
situation of the river from the geomorphological point of view, is most important. On the
other hand, if the geomorphological data concerning the selection of the appropriate module
is not available, there are three more modules to be selected which are based on the
theoretical derivations of the bank-erosion-rate equations.

5.9 R P M model

A simulation model to predict the river plan-form movement has been developed
(abbreviated RFPM). The model consists of three major stages. These are a hydrodynamic
simulation stage, a bed topography simulation with fixed-banks condition stage, and a bank
erosion and plan-form shifting stage. The first two stages have already been described in
Chapter 3. The last stage is presented in this section. It is possible, and indeed most usuai,
for vertical and horizontal erosion to be active in the same place at the same time. This
concurrence will come about in all curved parts of those channels that are being eroded
vertically, however small the vertical component may be. The resultant cutting of the ground
over which the stream runs is ‘obliguely downward’, that is, both downward and toward the
concave bank (Crickmay, 1974). Here the simulation result of the numerical model comes
to resemble this behaviour as mentioned by Crickmay, (1974). Moreover he recommended
this mode as ‘Much of the erosion of all rivers is of this sort: it is the most general mode’:
see Fig. 5.24. The structure of the model is presented in Fig. 5.12.
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Fig. 5.12 The structure of the RPM simulation-model
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5.9-1 Some discrepancies between physical sense and modelling workability

Centre line of the flow

Fig. 5.13 Sketch of the thalwep in a meandering river

Since the area of waterways measured along the line “cd’ in Fig. (5.13) is much larger
than that along ‘ab’, it follows that the velocity at the inflection point is far less than in the
curve, and this explains in part the formation of the shoal, for, as the velocity drops, the
sediment carried by the current is deposited. A decrease of the bottom slope at the approach
to the point of inflection contributes further to reduce the velocity and consequently 1
increase the amount of the deposited sediment. The present model display this phenomenon
and when the river width is splil into many strips across the stream it shows more detailsd
patierns of flow and bed topography. For example, if there are five computational points
across the river width, five stream lines will be simulated and five separate but continuous
bed topography paths will represent the river bed topography. In this case, the centre-line bed
topography will be deformed a little because of the lateral flow from one stream line to the
adjacent stream line. Consequently, the sand-bed will erode and a scour hole will be formed.

This phenomenon is depicted in Fig. (5.14).
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The study by Ikeda er al, (1981) which provides the analytical basis for the theory is
based on the assumption that the bank erosion rate at any point is proportional to the near-
bank perturbation of the depth-averaged flow velocity (i.e., the difference between the near-
bank and the centre-line value),i.e. U,'= U,-U, where U is the reach-averaged velocity and
U. is the local centre-line velocity of the reach.

However, because of the phenomenon mentioned above, the near bank velocity excess
in the longitudinal direction fluctuates and likely to result in a saw-tooth-like bank
displacement; see Fig. 5.15. These fluctuations cause difficulties at the new grid generation
stage. Although this can be smoothed out by using a cubic spline function, it is preferable
to derive a smooth development from the start since the model grows larger and more
complicated after the joining together of the many individual modules.

Hence U,'= U, - U is used instead of U,'= U, - U, where U is the reach-averaged
velocity and U, is the local centre-line velocity of the reach. This modification is probably
justified in the sense of its analytical basis to the extent that it is applied to the near-bank
perturbation of the depth-averaged flow velocity when the width of the niver is considersd
as a whole.

5.10 Grid generation

Basically, techniques for numerical grid generation can be divided into two classes,
viz. techniques which themselves involve solving partial differential equations, and algebraic
interpolation techniques (Gilding, B.H. 1988). In general, the techniques involving the
numerical solution of a partial differential equation appear to generate a smoother gnd in
which the propagation of boundary slope discontinuities is attenuated. On the other hand,
algebraic techniques provide a more explicit grid control and, in comparison to the other
class of techniques, require relatively few computations. Subsequently, in calculation, they
have the advantage of speed and simplicity. In this study, the time dependent shifting of the
river plan-form mapping is invented by using a simple geometrical method, see Fig. (5.13).

5.10-1 Grid map setting by differential geometry
The first step of the grid mapping is the construction of the river reach discretization

with various curvilinear surface-blocks the boundaries of which are made up of circular
segments as shown in Fig. 5.16.
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Fig. 5.16 Unit surface As and the river reach consists of various {(As)s.

Consider the surface of the river reach as a continuous surface S represented by S
= § (s,n) consisting of a number of blocks called As. Any block As on the surface is
bounded by 4 lines, see Fig. 5.16; lines 1 and 3 are curved and 2 and 4 supposed to be
straight; and four corners called (A), (B), (C) and (D). The location and size of each
independent block is defined by the curvature value taken at the comer(D) and the arc length
of the line(3). The surface area of 4s = 4s(s,n) € [5,8..] * [n,n.,]. A local orthogonal
panel coordinate system is then introduced, with its origin at any arbitrary point called
(Sg,n,); in the case of even nodes in n-direction (sy,ng) can be written as

(m,+n,.,)

{-51]1 "u} = [{.l:i. 7 3 {53'5]

and in the case of odd nodes in n-direction (%,n,) can be written as

(50,70) = (8.
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The width of the domain is from -n_, to +n,,, and the length of the domain is from

S 10 Sy, Where

bg

kbt
N -Eﬁn i E.ﬂm
A=l ki,

Therefore the domain reads
[0S ] * [Py * M

(3.36)

(5.37)

(5.38)

*3 ¥

: |

' i

! I

! : ~(5,m)

: (s,0) 'x '{n

¥)

A N &
©0,0) X 0,0) 2
(A) Odd nodes in n-direction (B) Even nodes in n-direction

Fig. 5.17  Example of grid maps in the case of odd nodes and even nodes in n-
direction.
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The hydrodynamic and bed topography computations take place on this domain and
let us assume that now we arrive at the stage of bank-line shifting. The displacement of the
bank line is calculated and the value of the displacement is known. Therefore the outermost
layer of the computation domain which is according 1o Fig. 5.13 the series of surface blocks
from (8o, M) 10 (8,0, Ny,) should be shifted in the positive n direction and the value of each
shift can be represented, for instance, by Aby. Since the left-top corner point of each surface
identifies its location, the shift is executed at that corner. However, in this study, the river
width is kept constant although the bank lines are shifting as mentioned earlier. This implies
that the series of surface blocks from the centre line of the river reach, from (g,ny) to
{Sumaxs Mo} Will move towards positive n direction and the value of each shift will also be the
value of Ab,. Therefore instead of the series of surface blocks from (So,Nau) 10 (Spue M)
the series from (5,,n,) to (S..,.N) is shifted. In this stage, we have a new centre line of the
nver reach and the entire grid mesh is calculated in the same was as previous one. The
superimposing feature of new mapping over the previous mapping is illustrated in Fig.
(5.18).

Fig. 5.18 An illustration of the time dependent grid mapping

5.10-2 Coordinate transformation

After the completion of the plan-form movement simulation it is necessary to present
the results in the graphical form. Since all the graphic softwares work with cartesian
coordinate system, the coordinate transformation from curvilinear coordinate to the cartesian
coordinate is derived. The curvilinear coordinate is constructed by series of circular
segments, depicted in Fig. 5.19. The direction angle o; defines the path and the first segment
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Ry

.
x
Fig. 5.19 Nlustrative diagram for the formula derivation.
of the river alignment has angle o, which is written as
o ) . 3 5.39
At 3 (5-55) (5.39)

General formula of angle o; for any j point on the curve along the path except the origin
where j=s, can be written as

é_ﬁjl 5

)
)30 (5.40)

(w6,

5oy
in which the sign convention of the angle 8, is consistent with that of n-axis. Therefore # is
negative when the curvature is negative. Therefore the entire river reach can be plotted in
the cartesian coordinate system for every (s,n;) points in terms of (x;,y,) points using
following equations

X =Xy *AX S K=Yy v AY (3.41)
Ax, = 4s, Cose; ; Ay, = As, Sina, (5.42)
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It should be mentioned here that each segment *j* is an independent segment and
obtaining its own identity such as As, and radius of curvature R,. More over inflection point
or turning point can be at any ‘)" point of the entire curve. Nevertheless there is only one
rule which is two adjacent segments should have a common tangent. If and when this rule
is fulfilled, there is only one general equation 1o be used in the complete computation.

(X-Y) co-ordinate system ————_

s,
- \\ Physical boundary

e[ ] Computational domain

By T i LR All L L

B .

Grid mesh
e
‘:'_ - 4 C 0 =
5
Physical boundary Computational boundary

($-n)- computational domain

Fig. 5.20  Difference between (x-y)- and (s-n)- computational domain (i.e. the
present model).

e
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5.11 Simulations

The simulation resulls of RI'M model are presented in Figs, 5.21 10 5.24. The resulls
are satisfactory although it cannot be verificd by the field measurements, For the regular
curves as shown in Figs. 5.21, 5.22, and 5.24 are satisfactory. For the particular type of
skew channel shift, which is called obliguely downward, as shown in Fig. 5.24, could not
be simulated more than one to two times shifling. The maximum two times shifting is
possible but still more work has to be done on this simulation.

Time dependent river plan—forms
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Fig. 5.21 River plan-form movement simulation S1 of the present study
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Time dependent river plon—{orms
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Fig. 5.22 River plan-form movement simulation §2 of the present study
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Fig. 5.23 River plan-form movement simulation 83 of the present study
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Sequrential plan-form of Ishikan River

Fig. 5.24 River plan-form movement simulation $4 ( results are not shown here )

5.12 Conclusions

Actually equilibrium does not exist in the sense that there is no one discharge of a
certain magnitude, or frequency of occurrence, with which the channel is in equilibrium,

The factors affecting the temporal variation of bank erosion can be divided into five

roups:
ey (1)  parameters of the flow condition and hydrographic characteristics
(2)  the rain-fall characteristics of the storm

(3)  the duration between peak flows

(4)  the soil moisture conditions, and
(5) the temperature conditions, primarily the incidence of frost.
The first three factors can be taken into account through a consideration of the
effective discharge. In particular, the temporal variation of the bank erosion can be related
to the reformation of the shape of the river cross-section.

There are two different situations that we have to confront. The first situation is
dealing with rivers in which geological, hydrological and morphological data are well
documented. The present model could simulate these kinds of rivers conveniently and the
calibration of the model is relatively easy because of the facilities of well documented data.
The other situation arises when dealing with rivers for which only geographical data is
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available. These rivers can be considered as hypothetical cases by specifying them using
dimensionless characteristic parameters, such as width-to-depth ratios, radius-to-width ratios,
and sediment sizes. In this case, the sediment properties can be simplified by considering
them as sand-bed and sand-bank rivers.

This study strongly proposes the idea of "Rivers as models of their own”, through the
RPM simulation model. The river models have the advantages that the discharge can be
regulated at will and the bed can be inspected in detail anywhere. It is also liable to
exaggerate the relative importance of factors that are relatively unimportant in the prototype-
as we shall call the fully-natural river. The word ‘model’ always implies a comparison with
something else which is then called the prototype; either partner may be called * the model’,
and the other is then the prototype. In this study, rivers are treated as models of their own
implies each river is unique and through the process of simulation each river obtains its own
design. Therefore RPM model simulation actually is not merely a mathematical modelling,
rather compounding process of unique rivers.

It can be concluded that bank erosion rate modules represent the field measurements
and the RPM model is capable of simulating alluvial-river plan-form movement.

5.13 Discussion

Almost every theoretical study in the history of this subject has pointed out the vital
role of width-to-depth ratio and radius-to-width ratio, However, each theory has proposed
another weight of how these ratios contribute to the equilibrium bed topography and the bank
erosion. In this study, the bank erosion rate (m/yr) and these two ratios are studied for some
hypothetical rivers (simulated) and the interrelationships have been further considered.
However, as this work remains inconclusive, it will not be reported.

It has been mentioned earlier that this work is based on the assumption of constant
width while channel alignment is shifting. The constant w:tdlh assumption can be justified in
the real river case. The following case has been described in detail (Neil, 1983) and will only
be summarized briefly. Over a ten year period, the PIOgrEssive shift and accentuation of a
sharp bend in the Tanana River, Alaska, was documented (Fig. 5.25a) and over a five year
period careful measurements of bed load were rnade at a section just upstream (Burrows ef
al., 1981: Burrows and Harrold, 1983). Comparison of quantities showed that the average
annual bed load transport rate balanced very closely the average annual rate of bank erosion,
implying a complete exchange of material whereby incoming bed load was deposited on the
accreting point bar and replaced by material derived from bank erosion (Fig. 5.25b). Since
a single severe bend of changing geometry is involved rather than a succession of bends as
previously assumed, it cannot be Emfﬂlllﬂi for all kinds of meandering rivers. However,
it is an evident to prove the justification of the assumption used in this study.
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Fig. 5.25 Bed load exchange in a sharp meander bend of the Tanana River,
Alaska. (a) Documented erosion {from U.S. Army Corps of Engineers,

—

5.14 Suggestions

There are some important elements related very much close to this area of study
should be mentioned in this section. The suggestion is made to incorporate for the future

studies.,
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5.14-1 Discharge-induced river-bank erosion

From an analysis of the characteristics of the one-dimensional model it is concluded
that generally river widths cannot be stabilized by protecting certain carefully chosen bank
sections only, and that computations of river planimetry can be decoupled from the
computations of flow and bed topography (Mosselman, 1989). Several indices of stream-flow
have been employed, including dominant discharge and bank-full discharge, but in a study
based upon several rivers of the United States, Carlston (1965) concluded that the discharge
controlled the meander wavelength over a range of flows, possibly falling stage flows,
between the mean annual discharge and the mean discharge of the month of maximum
discharge, and that meander migration took place during these stages. The size of meanders
has been related to the catchment area, and this also reflects the fact that the meander
geometry should be related to some parameter of stream discharge. The peak discharge can
be used as a direct measure of the maximum force exerted on the bank by the flow during
a storm event,

5.14-2 The need for care in the choice of a representative discharge.

When considering the variation of the discharge which is possible between the
probable minimum discharge and maximum (bank-full) discharge, Beck er al. (1980) showed
that for more than 50% of the time the actual discharge in the river is less than 20% of the
bank-full discharge. We refer to Fig. 5.15 (pg. 514 of their River Meandering). During 50%
of the time, however, only 10% of .the bank-full flow is possible. According to this
consideration, lateral bank erosion should be calculated from the effective flow rates, which
are usually less than the bank-full discharges. For cutoff and mass failure of the river bank,
the calculation should be made for the bank-full flow condition or some probable maximum
flood of a definite return period.

The discharge regime of the catchment upstream from a river cross-section forms a
fundamental independent control of channel cross-sectional morphology. As dischary ,
at an individual cross-section, changes occur in the water surface width, mean flow depth and
velocity and in other variables such as water surface gradient, the friction factor, and the bed
shear stress.

The fluctuating discharge of & natural river is unlikely to be represented by a single
dominant discharge. It is important to select the effective discharge or the representative
discharge of the specific river which has to be used in the simulation,
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5.14-3 An introduction to Magnitude Frequency Analysis

Although studies concerning the magnitude of the effective discharge have been

contributed by many authors, the main exponents of these are Pickup and Warner (1976),
Benson et al. (1966), and Andrew(1980).

A definition of effective discharge is given by Benson (1966) as:

‘The discharge that, over a long period of time,
transports the most sedimens’,

(After Wolman and Miller, 1980}

B

A) Sed. Transport
Frequency

Product of A and B
(HFA+Sed. transport)

Q¢ =Threashold event

Fig. 5.26 The relation ship between Discharge, Sediment transport and Frequency
of occurrence

In this point it is clear that the effective discharge is associated with the moderate,
high-frequency discharges, and not with the rare catastrophic events (see point D in fig.
5.26). The effectiveness with respect to sediment transport of a given discharge is studied
in Chapter 4 within the context of the stable channel width of the meandering river (se¢
Chapter 4). However in the case of selecling an appropriate representative discharge, the
effectiveness of a given discharge is governed not only by its magnitude, but also by its
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frequency. As shown in fig. 5.26, even though the sediment transport curve (A) rises with
the magnitude of the discharge, the high sediment transport rates associated with high
discharges occur so infrequently as to have little effect on the channel properties. The relative
effectiveness of a given discharge as defined by the magnitude frequency analysis transport
curve (C), is the product of the sediment transport rate and the frequency of its occurrence.

On the other hand, Richards (1985) stated that, in humid environments, extreme
events may modify the channel form by as much as 40% .

It is still a useful exercise to set these apparently contrary views into the context of
this study. One can use the first idea, that is a definition by Benson (1966) for the lateral
bank erosion process, and use the second idea for a mass failure of the river bank and for
& bend neck cutoff, since most probably lateral bank erosion may occur over a long period
of time and the mass failure may be associated more with extreme events. Wolman and
Miller, (1960) noted that, in many instances, land features were formed by relatively frequent
geomorphic forces, and not by the rare flood events. To be specific, they suggested that the
meander wave length and the channel geometry were governed by the effective discharge.

In fact, the situation is likely to be much more complicated in nature than that
mentioned above. For example, after a certain flood, subsequent lower flows will allow the
stable ‘regime’ form to recover. (This may take a considerable period, say 10-15 years).
However, firstly, the recovery period may exceed the return period of the flood causing the
channel modification, and, secondly, Newson (1980) suggests a case, where, after prolonged
above-normal discharges, sediment may be washed through the system, and the river will
become ‘supply limited’, causing severe erosion problems,

The concept of ‘magninede and frequency’' of geomorphic forces, developed by
Wolman and Miller could be use as a tool for the selection of the effective discharge. Two
principles of quantitative geomorphology are invoked in this approach. The first is that
effective geomorphologic forces occur relatively frequently. The second principle concerns
the relationship between land form and discharge, Two methods for calculating the effective
discharge exist. The effective discharge model can be developed and this separate module can
be joined as an assistant to the river plan-form movement model, However it must be
stressed that such details can be introduced into a further study. Naturally these details have
beéen bome in mind although the present study, but could not be included here. Therefore,
details of the method are not mentioned here and only the references are given (Benson, ef
al., 1966, Andrew, 1980, and Pickup, et al., 1976).

197



CONCLUSIONS AND DISCUSSIONS

"And don't we all sin by basing our Judgements on foo short periods of fme '

Sigmund Frewd

6. CONCLUSIONS AND DISCUSSIONS

6.1 Conclusions

To avoid too many complications arising at any one time, the present study
concatenates the long story of mathematical modelling, starting from the flow in the
meandering river and proceeding to the prediction of channel shifting. Consequently, the
conclusions are arranged chapterwise. Therefore there are three main parts, called part A,
B and C, that must conclude this study, which in the main work are presented as the three
corresponding main chapters, namely chapters 3, 4 and 5. The summary is presented first,
in section 6.1-1.

6.1-1 Summary

1. A bed-topography model for a natural alignment has been developed
with a satisfactory quality.

2 Bank-erosion models have been implemented and the results have been
found to provide a satisfactory agreement with observation in nature
and expenments.

3, A relationship between the velocities associated with the plane bed and
the dune-covered bed for alluvial nivers has been introduced.

4. A model for roughness prediction which is based on this velocity
relationship has been developed and the results found to be in
satisfactory agreement with ohservations and other, theoretical results.
In particular, the growth of the transition zone is represented very
satisfactorily and can be simulated continuously.

5. A new grid mapping method has been proposed, tested and developed.
The results are satisfactory.

6. A method to generate the grid over time has been proposed, tested and
developed. The results are again satisfactory.
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1.

This type (of modular-modelling) of river plan-form movement ig in
a way a kind of monitoring system which controls and assembles the
physically-based, independent modules.

The major factor that limits the maximum width of a nver is the
sediment carrying capacity of the alluvial channel and this is associated
more with the features of a three-dimensional flow. However, the
stable channel width or the optimum channel width can be determined
with models of fewer dimensions, allowing the stable width or the
optimum width to be decided for such rivers using reasonably
economical numerical model simulations.

A meander could not exist if the banks were unerodible or if they were
completely unstable. The meander pattern of melt water channels and
incised meanders on ice are formed without any sediment load or
point-bar construction by sediment deposition. Therefore bank erosion
seems to be the only reason for meander formation. However, since
a particular kind of meander pattern is in fact formed, the form itself
is reinforced by the sediment transport mechanism. Therefore it can be
said that the concept of an MTC channel width leads to a control of
the width and this prevents the channel from being completely
unstable.

6.1-2 Part A {Chapter 3)

The shear stress along a mugh channel bank is an impm'tant phﬁmm to be

considered; the following conclusions concerning this phenomenon may be drawn from this

study:

1. The roughness of the bank will decrease the longitudinal velocity, but increase the
shear stress. If the effect of roughness change is combined with the effect of the
secondary flow, a large bed shear stress at the toe of the bank is to be expected:
hence the undermining of the bank.

2. The lateral momentum transfer both by the secondary flow and by turbulent shear
are significant factors in shaping the cross-section of the channel. Therefore the
suggestions of the authors upon whose work the present study has been founded are
confirmed.

The model has been verified with flume experiments and observations of natural river

situations. It has been proven to be reasonably accurate with regard to the depth-averaged
flow field and the resulting bed topography.

Concemning the bed evolution process in river bends, it can be concluded that the

point bar and pool configuration of the equilibrium bed in curved alluvial rivers have to be
attributed to a transition in channel curvature, This fact is proven in the verification of the
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model in the critical regions such as downstream of the entrance, the exit of a bend, and the
region of the sudden change of the curvature or inflection points in the successive bend train.
Only in a very long bend of constant curvature (eg. Fig. 3.34; Case 2), will there be a region
{the fully-developed zone) where transitional effects have damped out and the classical theory
of river bend morphology provides a good agreement with the simulated bed configuration.
i.¢. the transverse shear force due to the secondary flow is balanced by the downstream
gravitational force, whereby the main flow and the sediment transport are parallel to the
channel axis.

It has been found, conceming the treatment of the upstream condition without
sediment input, differences occurred between nonequilibrium transport rates and comparable
equilibrium capacity rates at a maximum near the beginning of the reach but diminishing
towards the downstream end of the local scour hole. This spatial variation of the transport
rate deficit exists because the flow requires a finite length of bed to erode sufficient bed
material to satisfy its equilibrium transport capacity. Consequently, mathematical model
performance will be poor in the local scour hole region,

6.1-3 Part B (Chapter 4)

The existence of the MTC channel width in straight rivers is well known in the
literature. The present study shows that it also exists in meandering rivers. The advancement
between the previous notion and the present notion is not only to considerations of the river
plan-forms, but also the applied methods. The former is the analytical solution applied to
straight rivers and the latter uses the simulation results of the numerical model to draw

conclusion that apply to meandering rivers.
The following are the most important findings of the present study:

1. A velocity relationship for a river with two different regimes, corresponding
to a plane bed and a dune-covered bed, both considered for constant
discharge, slope and grain size, has been established,

2, The computing time is reduced by a factor of between 10 and 30 times.

3. The velocity relationship and proposed procedure provide a possible way to
predict a more acceptable roughness factor in the transition zone.

An interesting debate concerning these matters is still continuing and appears to be
developing in a positive direction. Among others, Julien and Simons, (1984) have drawn the

ollowing conclusions:

1 The hydraulic geometry of alluvial channels can be determined algebraically
without the use of a sediment transport relationship, thus denying the very
existence of an MTC channel.
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2 Besides water discharge, sediment size is shown to be an important variable
in defining the hydravlic geometry.

Nevertheless, the MTC hypothesis has a physical foundation. In our case, if the slope
is predetermined, then the transport capacity increases with the reduction in width, However,
the increase in transport capacity with width reduction is countered by the bank effects,
Because of the lower shear stress along the banks, the banks contribute little or nothing to
bed load transport.

According to the more basic hypotheses and theories, certain variational principles
(extremum principles) can be used to solve the problems of dissipative mechanical systems
in static or dynamic equilibrium conditions. The minimizing principle can be used
independently or in tandem with the equations of motion to solve problems with a large
degree of freedom. The equilibrium solution methodology thus obtained has been shown,
however, to contain certain implicit assumptions.

We observe (Landau and Lifshitz, 1960) that in classical mechanics it may be shown
that extremum principles provide viable alternatives to the better known mechanics based on
Newton's laws. In fact, however, the equivalence is restricted within the context of a closed
system, This is an unacceptable restriction when the problem considered cannot be regarded
as a closed system. Fortunately in sediment transport mechanism it can be regarded as a
closed system when sediment particles are flowing while not being emersed. On the other
hand, the extremum principle might be applied most beneficially precisely to problems with
large degrees of freedom, such as turbulence and river mechanics, for which the classical
approach often fails to give a sufficient number of equations. Therefore it can be concluded
that the optimum river width for meandering rivers clearly exists and it can be predicted
from the sediment transport capacity.

6.1-4 Part C (Chapter 5)

A physical justification for such a simulation of river processes must still be firmly
established. Physical understanding of the way in which channels become smaller is lacking.
Not only do the phenomena appear 0 be random, but the two distinctive processes,
enlargement and shrinkage, are of incomparable time scales. Therefore a constant width over
the entire reach is assumed and an effort is made to understand the problem of the shifting
movement of the plan-form.

Since the river channel is self-formed, the equilibrium channel geometry is so adjusted
that it closely conforms to the flow pattern. Along a meandering channel consisting of bends
(in bend train experiments) and crossovers, each bend apex, which approximately coincides
with the zone of maximum curvature, is preceded and followed by transition curves, Helical
motion is at the maximum strength near the apex and it is weak near the crossover.
Therefore, the helical motion peaks, decays, reverses, and then grows between WO
consecutive apexes. This phenomenon is clearly expressed in terms of the simulated near-
bank velocity excess. Correlation of this model with river data suggests that the meander
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plan-form is related 1o the alternating flow development between the helical pattern and main
flow (longitudinal flow). This in tun shows the applicability of the model, which in this case
agrees with the theory of Rozovskii (1957).

Excess shear stress methodologies work best for cohesionless boundary materials.
However a given flow can effect widely differing erosional responses. As Pizzuto and
Meckelnburg (1989), observe: "for .... complex failure processes, simple correlations
between erosion rate and near-bank velocity may not exist".

WRTC

Water, Nesearch and
S l1aining Centre :
The discussions cover three aspects, as following:- the physics, the mathematical

formulation and the computational method.

6.2 Discussions

6.2-1 The physics of natural rivers.

There are severe difficulties in applying the MTC channel width to natural
streams. Briefly, these are as follows:

1. The explicit assumption is that the discharge is fixed while the width is
considered a variable. Provided that the channel banks are sufficiently high to
prevent over-bank flow, it is possible to vary the width while retaining a fixed
dominant discharge. But in most natural alluvial channels there is an over-
bank flow at stages that equal or exceed the dominant discharge. Thus, as the
channel width is reduced, more of the high flow is wasted over-bank, and is
not available for moving sediment along the bed of the channel. This implies
a reduction of the dominant discharge with decreasing width, which proceeds
against one of the initial assumptions.

2, The application becomes more complicated because nature’s fluctuating
discharges cannot be conveniently represented by a single dominant flow,

6.2-2 The mathematical formulation

The need of mathematical formulations for certain elements of the entire study calls
for some attempts which are reported as followings.

0.2-2.1 Path of the sediment particle travelling along the river bend

An attempt is made to trace the path of the sediment transport along the individual
Stream lines as illustrated in Fig. 5.12. According to the experimental results, there are two
Possible paths for sediment to form a point bar which is located at the inner bend,
downstream of the bend apex. The first one is that whereby material entrained from the
Concave bank is caught in the transverse component and carried towards the middle of the
Channel near the bed. The vigorous cross-currents near the bed in a bend can transport a
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considerable amounmt of bed material toward the convex bank. This is a part of the
mechanism of point-bar building. If the location from which the bed material was derived
is far enough downstream in the bend, such material is not carried across the bed to the other
side of the channel but moves into the crossover without having crossed the channel. Once
into the reversed curve, it is drawn toward the same bank from which is started. To trace this
phenomenon, the single bend and a series of bends are simulated with the same hydraulic
characteristics and the same bed material properties. Unfortunately, the path of the sediment
movement cannot be clearly explained from the results of the simulations. However, the
cyclic order of curvature effect from the previous bend to the following bend is clearly
noticed, see Fig. (3.36).

6.2-2.2 The secondary flow convection factor

The model shows that simulation results using the fixed secondary flow convection
factor across the width of the river agree with the measurements along the outer wall while
the transport is somewhat underestimated along the inner wall. On the other hand, if the
simulated results fit with the measurements along the inner wall, they will differ from the
measurements along the outer wall. The last and the most laborious trial was that of
introducing the theoretical value of the secondary flow convection factor at the convex bank
while introducing the double magnitude of the factor at the concave bank, and this was then
introduced gradually over the river width from first value to the second. The result are
promising, however to verify this factor needed more test runs.

6.2-3 The computational method

The present model yields satisfactory results in the case of bed configurations
deviating from a flat bed. However, the influence of the side walls must be taken into
account. The description of the flow field near the sidewalls raises many problems, both
physical and mathematical. The physical problem is that of finding a suitable turbulent model
and the other can be mentioned as that of the computation of laminar, axisymmetric flow.

The choice of grid size depends partly upon the amount of local geometry detail that
is to be included, and partly upon the computing cost; often a compromise has to be made
between these two factors.

6.3  Suggestions for the further study
6.3-1 Suggestions for part A

So far the simulation of the bed topography in an alluvial river bend gives satisfactory
predictions and other information about the various sizes of river bend, including an infinitely
long bend train. At this point, however, an important question arises. That is, on what basis

one can say definitely that a river will change its plan-form? If it will change, in what way
will it shift, and with which pattern (eg. lateral movement, downward movement, or 2

204



CONCLUSIONS AND DISCUSSIONS

combination of these). Of course, since we are concerned about the instability of the river,
the inseparable phenomenon is the stability of the river, Strictly speaking, no flowing river
is completely stable, but it does have an equilibrium condition, which is the result of a
balance between different processes involving both erosion and deposition within the meso-
scale time-span. This equilibrium condition can last momentary, or some years. If it may in
certain singular cases endure for a couple of decades, this implies that the river is not
actively changing its plan-form for a certain time-span. Therefore to be able to distinguish
between these two is of prime important for the continuation of the present study.

As written earlier in this chapter, there is at present no satisfactory description of the
mechanisms which determine the regime width of channels. The two available predictive
methods are those of empirical regime theory and rational regime theory, both of which are
based on an extremal hypothesis and both of which eschew any description of the physical
processes involved. The other approaches only consider mechanisms for channel enlargement
without taking account of the way in which the regime width is the result of a balance
between different processes involving both erosion and deposition. A full description of the
development of channel width may then require a knowledge of the distribution of the shear
stress over the boundary of the channel.

Therefore the shear stress distribution for the bank line should be continued in a
further study. Different sediment loading conditions, namely those of initial equilibrium,
over-loading, under-loading and clear water need to be considered. The study should also be
extended to cohesionless, fine-sediment bed forms in shallow flows.

6.3-2 Suggestions for part B

This study has assessed and applied exiting theories and has assembled them in an
appropriate manner into specific problem areas in order to get nearer to a solution of the
roughness-prediction problem. Some interesting points for further study are suggested here:-

1. general conclusions should be defined for meandering rivers for various
sinuosity values, various bend angles, and various discharges. Some have been
done already and can serve as working examples for the remaining areas of

study.

2. the grain sorting effect is also attractive for further study. Sediment transport
per size fraction can be calculated by size fraction formulae and the
composition of the bed material can be changed as in nature. It will be
interesting to see the interaction between local roughness and the bed material
composition.,
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The relationship between this specific chapter and the river plan form movement
simulation model could be further developed:-

L The major deficiencies of the present mathematical model of river flow have
been its failure to represent the dependence of friction factor on sediment
discharge or concentration, Natural rivers adjust their hydraulic roughness in
their own ways. Every beneficial feature of a physical system increases the
complexity of its mathematical modelling in direct proportion to the value of
the attendant benefits. Getting more insight into the physics and the ability to
add more appropriate friction factors will help the simulation one step nearer
to a reasonable prediction.

2. The shear stress is calculated from local flow and roughness conditions. Local
shear stress is also calculated by dividing the river cross-section into a number
of strips. Therefore, the local bank shear stresses of the inner and outer banks
can be calculated from the two outer-most strips correspondingly. However,
this is not really important for the case where the width-to-depth ratio is
greater than 15. Moreover, although the local shear stresses are estimated, the
critical bank shear stress is still unknown and indeed known not better than an
empirical relationship, such as 0.75 times the bed shear stress. Therefore
further research should be concentrated on both local and critical bank shear
stresses.

6.3-3 Suggestions for part C

Since the RPM model is able to simulate both natural and hypothetical alluvial rivers
in different sizes (within the limitation of its assumptions), the future study could be continue
to investigate the most probable curvature of various sizes of rivers also within the limitation
of its assumptions.

The RPM model is a kind of physically-based numerical model. The ambition for the
future is to be able to demonstrate the sediment sorting process in the river bend in general
and the pattern of river sediment deposits in the transverse direction in particular. In order
to explain a clearer picture of this aim, let us consider one of the real cases in Muddy Creek.
As Dietrich, 1989, describes it; "In the pool and along the steeper sloping surface of the
point bar, the near-bed flow direction is strongly inward. At the edge of the bar top, the
coarse sediment travels against this inward component of the secondary circulation by rolling,
avalanching obliquely down from the crests of migrating dunes on the side or face of the
point bar, and by being transported by trough-wise currents of obliquely oriented dunes. The
finer sediment crosses the coarse sediment as it is carried inward from deeper water and up
onto the downstream end of the bar by the inward directed boundary shear stress associated
with the secondary circulation and flow in the lee of obliquely oriented bed-forms®. If we
add the non-uniform sediment transport process in the model, then we may be able to
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simulate even this physical phenomenon. This implies, however, that the whole environment
of the simulated flow field will be different because of the detailed account that will need to
be taken of the dunes and bar formation and as a consequence the shear stress and the
resistance to the flow and hence the velocity field, and so on. Thus it can be expected that
this will provide a further deeper insight into the evolution of the river bed composition and
structure and its associate bed features. From there, the corresponding migration rates and
paiterns which have been given in Chapter 5 will also however be changed.

The natural cut-off process is a following process of meander migration. The factors
favourable to a small cut-off developing are that: (a) its channel should have at least three
timesthe straight river’s regime slope; and that (b) its upstream end should taken off from
2 location where the parent’s bed load has less than the average amount of coarse material
from the downstream portion of the outside of a bend.
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LIST OF SYMBOLS

LIST OF SYMBOLS

This list of symbol is made to have a quick look for the meaning of the symbols.
However sometimes one symbol has different meanings and this happens because these
particular symbols could not be renamed only for the sake of this thesis. The symbols come
from the fundamental use of the different scientific fields and these names are fixed in their
own field of science. The author felt that she has no right to change the well known and well
established symbols. Therefore the meaning of symbols are always expressed in the text in
cach equation where they appeared.

an order-one scour factor parameterizing the role of secondary currents
catchment area

a power coefficient in the power law sediment transport formula
a power of flow depth in Manning's formula

local bend curvature

measure of Calcium jon

representative grain diameter WRTC
representative medium grain diametefyaeer Fesearch and
a dimensionless erosion coefficient  Jraining Centre
primary coefficient of bank erosion

secondary coefficient of bank erosion

the void ratio

friction terms in 5-, n- and z- directions

a function to take account of the influence of the side walls
the particle densimetric Froude No.

acceleration due to gravity

reach-averaged depth

water depth

water depth at the river axis

water depth corresponding to the plane bed condition
hydraulic stability index

the longitudinal bed slope

agricultural intensity index

soil erodibility factor

the strength of the secondary flow

a position of the computation point in s direction

a position of the computation point in n direction

total roughness of dune-covered bed secondary flow intensity
shape of the longitudinal flow velocity

shape of the secondary flow velocity

length of the bank segment

local bed elevation

a factor depending on the bed roughness

a power of effective shear

an erosion rate constant
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measure of Magnesium 1on

the cross-channel coordinate (n is orthogonal to s)
total number of trees in the segment

measure of Sodium ion

the number of iterations

stream functions

total pressure

the total discharge

local radius of curvature

the radius of curvature of the channel centre line
radius of curvature of @-axis

radius of curvature of y-axis

stream-line curvature

the longitudinal direction coordinate

river bed slope

Sodium adsorption ratio

the volumetne sediment transport flux

local transverse bed slope

transverse bed slope at the river axis

local velocity

reach-averaged mean velocity at bank-full discharge
near-bank velocity

near-bank excess velocity

mean velocity of the dune-covered bed

friction velocity due to the skin friction
velocity components in s-, n- and z- directions
width of the river

shape factor of the particle

a dimensionless roughness coefficient

the dynamic friction coefficient

mass density of the fluid

the Von Karmén constant

the rate of bank migration

a distance step in n direction

a distance step in s direction

a time step in numerical simulation

bed shear stress direction angle

sediment transport direction angle

the critical shear stress

the bed shear stress

the bed shear stress in n direction

the bed shear stress in s dirction

the density of the water (strictly speaking, the density of the fluid)
the specific gravity of the sediment

the ripple factor

the dynamic friction angle



LIST OF SYMBOLS

the bed shear stress for horizontally sloping bed
the bed shear stress value for horizontal bed
Shield's parameter

a relaxation coefficient
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Al Overview of the study

OVERVIEW OF THE STUDY

(o
¥

2 - DH model
curvilinear co-ordinate system

Simulate various sizes
of river samples

River Bank erosion
Meander migration

QOutput No. 2
New position of the river

Fig. A.1 Overview of the study
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A.l  Accuracy of the grid mapping

The accuracy of the grid mapping is considered from two aspects, the first being that
of differential geometry and the other that of the physics of the stream flow. The first is
concerned with the value of the angle through which an arc can maintain a constant radius
and the second is concerned with a flow and bed material relaxation length. The first
specification concerns the upper limit of are that can be chosen for the largest value of the
curvature encountered. In practice it is found that, the largest curvature can be taken as the
radius of curvature that is less than or equal to four times the width of the river (see section,
3.12). The length of the computational cell in the s-direction is called As (the distance step)
and it can be conveniently defined by the angle subtended at its centre of curvature.
Experience in running this model has indicated that an upper limit for this angle for the
largest curvature is approximately 0.062 radians. The second specification is effectively
expressed through equation (3.64). The stability of the model can also be assured by these
two specifications.

Here, the accuracy of the grid mapping by circular segments is explained. In order
to prove that this method is applicable accurately enough in the sense of mathematics, the
following explanation can be constructed. Let us consider a formula for the circumference
of a circle, and the ancient problem of how to find the value of x"(* - which of course, being
irrational, cannot be determined exactly but only calculated with different degrees of
accuracy). We begin by drawing a circle and two regular polygons, one inside the circle and
the other outside, but both intersecting the circle only in a finite set of points. This is shown
in Fig. A.2.

The polygon inside the circle is to have its corners just touching the circle, while the
one outside has its sides just touching the circle; the former polygon, in other words, is
‘inscribed’, the latter ‘circumscribed’, in relation to the circle. Now it is clear that the
circumference of our circle is greater than the perimeter of our inscribed polygon, but less
than the perimeter of our circumscribed polygon. If we increase the number of sides of the
polygons, it is clear that the difference between the lengths of their perimeters becomes
smaller and smaller as the number of sides is increased. Since the circumference of our
circle always lies between the length of our perimeters, we can find the circumference to any
desired degree of accuracy by increasing the number of sides in our polygons indefinitely and
thereby steadily reducing the difference between their perimeters, or erhausting that
difference. Thus the distance between these circles, or the area between them, expressed as
a function of the number of sides of the polygon, can serve as a norm for the adequacy of
the polygon to represent the circle.

Let us pick out one side of the circumscribed polygon and joined its ends and its mid-
point to the centre of the circle, as in Fig. A.2b; Fig. A.2c shows one side of the inscribed
polygon similarly treated. Considered the diameter of the circle is 1 unit. From Fig. A.2b,
the perimeter of our circle is a function of tangent (i) and according to Fig. A.2c, the
perimeter of our circle is a function of sine (i) in which (i) is a half of the interior angle. If
we take twelve-sided polygons inside and outside of the circle, the perimeter of the circle lies
between 3.2/48 and 3.1056, If we increase the number of sides to thirty six, the perimeier
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Fig. A.2 A circle with inscribed and circumscribed polygons and their
corresponding segments

lies between 3.392 and 3.15. Of course, if we go on increasing the number of sides in the
polygons "to infinity’, we arrive at x. Now that we have established that the value
(circumference / diameter) may be found to any required degree of accuracy. Using this
elementary (and ancient) construction in the set of formulae to set up the natural alignment
of the river, provides the following criteria:

Crpy = 27 Bpyy

Sty = RT!'i E‘rﬁmd ] 1

ARCqy = gy al the centre line of the river

River Length = I ARCqy

in which subscript TPj means (see Fig. A.3) L)
¢, = circumference of the corresponding circle "j*
s, = circumference of the corresponding segment "}
R, = radius of the corresponding segment °j*
©,,.s = angle subtend at the centre of the corresponding segment *j"
ARC, = an arc length along the centre line of the river at the

corresponding segment °j"
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Q,
Fig. A.3 The definition sketch and common tangent concept

(1)

(2)

(3

(4)

A3

The first step seems extremely simple, but by changing the angular measurements
from sexagesimal measure to radians, this does provide a way to estimate the
adequacy of the representation.

It shows how two consecutive segments should have a common tangent (see Fig.
A.3b)

For a very strong curvature, say three to four times the width of the river, the angle
§ < 0.062 rad is suggested by the construction.

The definement of As also depends on the width-to-depth ratio of the river. It can
only be achieved through experiencing the model; therefore some hints are presented
in Chapter 3, section 3.11 and 3.12.

Derivation for bank-shear-stress value in a meandering river

Theory for meandering channel:- The presence of meandering channel introduces

the complication of secondary current associated with the exchange of flow between the
valley and the channel, This exchange is not constant, but is affected by a number of

232



APPENDIX-A

variables, including the severity of the meander pattern and the relative depth of the flow in
the channel to the flow in the valley. If one considers a meandering channel without flood
plain, the exchange of flow between the valley and channel can be put aside but the
secondary currents. For that reason, the cross-section is definitely non-prismatic.

If the cross-section is irregular, also referred to as a compound cross-section,
application of Manning's, or Chezy's equation to the gross section will lead to a significant
underestimate of the discharge. This arises because of the disproportionate effect on the
hydraulic radius of the shallow flowing parts of the cross-section. These parts tend to
increase the wetted perimeter relatively more than they increase the flow area. The calculated
hydraulic radius is not a true representative of either the shallow part or the deep part of the
cross-section. Therefore it seems reasonable to break a gross section up into a number of
more or less regular sections and apply Manning's or Chezy's equation to each part
separately. (Note. That is already done in the numerical model.) The total discharge is taken
as the summation of the discharges of the parts. In this case the equations take the form

e} i
Q= {d‘f‘ - "":: W ) 5 (A.1)
1
0 = (ACR" + ACGR" + ...... ) S (A.2)

An important feature of above equations is that it permits differences in roughness
values in each part to be accounted for directly. In egns. (A.1) and (A.2), the energy slope
is the reach-averaged value. However different slopes S,' could be used for each sub-section
by eqn. (A.3). For the time being the emphasis is place on the hydraulic radius and the
roughness coefficient. Differences in roughness with respect to the water depth is more
significant in laboratory flumes where the Reynold’s numbers are in the lower range. In any
case roughness decreases with an increase in water depth. This is attributed to the Reynold's
numbers and relative roughness effect. Therefore variation in water depth, hydraulic radius
and relative roughness lead to a way to develop an expression for bank-shear-stress,

“'H - "’.u'

Il (A.3)
5

5: -

To derive the bank-shear-stress in a meandering river, flow is firstly described as flow
in a channel section with composite roughness. The following points are considered.
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| The roughness along the wetted perimeter may be distinctly different and the cross-
section of a channel is composed of number of sub-sections (see Fig. A.**).

2. Mean flow velocity in each sub-section is different.

. 1

Bed and bank roughnesses are considered separately.

S = -
_””I.-,r.-.-'J'n'.n'.n'a'-'.l'-"a'ra's.-',.',.'_.._r-ilr_ 1 {E: E_I]‘FLI
cp b
Joed ¥ & Si-{Ei-Bl}.“L'
S
5
l,..-,-.-.-;.lr.lr.'.-.-.r:.-'.f.-".-'f.-'..r,.-.,”r
EJ F
”..,-.r.-.-u.r £ s
E-L A= .g””"’m
S ey
— sl
prd ey
il ””“Juu
E"ﬁ jjl'li

Fig. A4 Ilfustration of local slopes when each one behaves as a stream-line

The force resisting the flow per unit area of the stream bed is proportional to velocity
square. i.e. force = V?

., force = K V?

in which K is the proportional constant. If surface area of contact can be expressed
as PL (see Fig. A.**), then total force over this area is as follows:

. total force = K V' P L

On the other hand total force can be the drag created by the flow of fluid,

i.e, Ed- 2 Vip L2

~» the magnitude of K can be expressed by coefficient of drag; K = C, o2

. in which p = density of water and C, = coefficient of drag.

Assume total force resisting the flow (i.e. K V? P L) is equal to the sum of the forces
resisting the flow developed in the subdivided areas. By this, equivalent roughness ent
is coeffic

From the hydraulic condition, n;, ny,..n,...,ny are known as equivalent roughness
mﬁtim‘[ﬂ fﬂr mh EUhmjm- me “!- *... &H lﬁ'ﬂﬂ qmﬁm ﬁH‘ nll nll'l-l-nh---- 'nﬂm
be writien as n, = Hﬂ.u Mgpdseeonlly = f{l'l...u npﬂ_r..,mdm - ﬂhl#h rh'l"l.]' mwﬁ”d-}' Let nu
and ny, be the roughness coefficients for bank and bed of sub-section "i" respectively. Then,
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Fig. A.5  Definition skeich
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weited perimeter P, and Py, for bank and bed should be defined appropriately. Thus the
general equation for an equivalent roughness coefficient n; might be useful to calculate the
roughness coefficient of the bank portion. In order to develop a bank roughness coefficient
relation from the certain hydraulic condition, assume that the total force resisting the flow
is equal to the sum of the resisting force due to the channel bed and the bank. It can be

expressed as follows:-

KVLP=K VLB +K VILP, (A.5)

Subscripts w refers to the bed and b refers to the bank respectively. From now on subscript
i will be omitted for all the parameters would be refer to i* subsection. The effective

gravitational force component parallel to the bottom should also be considered and that is w
A L Sind,
.ll'l“f]lic]'l W = unit Wﬂ-‘lghl of water

A = watér arca

§ = bed slope angle
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If we equate the two forces as below:

aAL & EVERL (A.6)

the velocity can be written as follows:-

A (AT
5 5

v | ¥ (A.8)
KRS

from which one can exchanged J|(w/K) as Chézy coefficient and therefore egn. (A.5)

becomes
P P
& T B (A.9)
¢ c

Let the wetted perimeter P, = a P, and substitute in eqn. (A.9), then
l+a _

!
c

-

(A.10)

nle

For Manning roughness form, C = R'%/n can be substituted in eqn. (A.10) and as a result
eqn, {(A.11) can be written as follows:-

(lvan? _ M _an,

e (A.11)

For the sake of convenience, both eqns. (A.10) and (A.11) are presented here where
(A.10) is in the form of Chézy roughness and (A.11) is in the form of Manning :
Further assumed that the total hydraulic radius R is made up of two parts: mehm“ﬂ‘
radius R, due to the channel bed and R, to the bank; i.e. R = R,+R,. ydrauio
Now let us assume that g, = Ry/R, and ¢, = ny/n,, eqn. (A.12) can be written as below.
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(o) 1 = nd (1+1)" (&L + agl?) (A.12)

For the condition of maximum discharge, Pavlovskii gave the following equation.

& _y (A.13)
dﬂﬁ
& =g " (A.14)

Thus after some manipulations, the roughness coefficient for the channel bank can be
writien as below.

1+
n,=n (A.15)
@* + 2™

In fact eqn.(A.15) can not be solved without any auxiliary condition equation because
bank roughness n, appears both sides of the equation. For this necessity Einstein (1934) side
wall correction method is used as an auxiliary condition (presented in section A.6). Thus
eqn.(A.15) is solved for any i® sub-section (n is supposed to be n; in this case) and hence the
roughness coefficient n, is calculated. In he same way Chézy coefficient for the side wall C,
can be calculated from the combination of eqn. (A.10) and Einstein side wall :
equations (A.16), (A.17), (A.18) and (A.19). There after the dimensionless shear stress for
the side walls §, can be calculated. In other word 8, is the bank-shear-stress value in a
meandering river. The river cross section is composed of number of sub-sections and each
section can be calculated in the same way under their respective conditions such as both side
walls condition, one side wall condition and no side wall (middle sub-section) condition.
Therefore the inner bank-shear-stress can be estimated from the calculation of innermost sub-
section and the outer bank-shear stress can be estimaled from the calculation of outermost
sub-section, Moreover, by doing this calculation along the each grid point from the directio
of upstream to the downstream, we have the spatial distribution of the bank-shear m“ “: mu""

dlong the bank-line.
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A.4 Einstein (1934) side wall correction

Fig. A.6 Definition sketch for Einstein side wall correction

The side wall correction suggested by Einstein (1934) is used as an auxiliary condition
for the previous section. This correction consists of the following equations.

%-—c_m-c‘_\}’m_j (A.16)

R,
R,=h(l-232) (A.17)

R,
Ro=h(l-3) (A.18)
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12 R,
3.48; (A.19)

C. =18 log

in which
eqn. (A.17) = two side walls condition
eqn. (A.18) = one side wall condition
C, = Chézy coefficient for the side walls
R, = hydraulic radius of the side walls
R, = hydraulic radius of the bed
§ = energy slope
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A'S mmHAM Llsmﬂ'l-qun'..“..

THIS IS A SIMULATION FROGRAM FOR RIVER BED-TOPOGRAPHY WITH NATURAL ALIGNMENT

IN ALLUVIAL RIVERS USING LOCAL ROUGHNESS (DUNE DIMENSIONS PRESENCE).

C e o o ok e AR S o o o e e o
€ * Program for meandeoring bed-topography model *

' s 8 e o e el o e oo o o = e o
€ * Four point scheme, Program Mame = HYDHST.for *

C L LR L LT E T LT LT ey e b e o
C  Radius of curvature is changing along the n,direction.

C

C DECLARATION OF VARIABLES

C

CSLARGE

PARAMETER (G=9.81 N=100,M=15LL=10)

REAL QI,DN,RSC,DSC,CHE,EPS, RHS, MU, DM, DT, TOUC,DEL, BETA, TTIME,
& TOUP,HO,WIDTH,KSN,C,R5Q5,DQ,EPS1,DIFF,DH,ERR, R5C1,DSC1,RSC2,
&  DSC2,RSC3,DSCI,RSC4,DSC4, RSCS, DSCS, RSCH, D506, R5C7,DSCT, RECE,
&  DSCE,RSC9,DSCY

INTEGER 1,JJ,KK,MM(M),VCOUNT,ITER, tpl 4p2,T,TT,PLOT, PTIME,OUT,CODE
& JKKC,CORR,START,STOP,TP3,TP4,TPS, TP6, TP7,TPS, TP9, TP, L JCRS

& JNP,NP1,NP2,ITER2, [ROUGH

REAL*8 w,d,ds, PERC, TH,LH

CHARACTER*50 TITLE

common /f/CHE,SLOPE,RSC,DSC, RN, DN, 11, KK, EQU,L, TP(LL), CHEL{N, M),

& RSCL(LL),DSCL{LL) HINIT(M),DPW{M),H(N,M),F(N, M),
& QN M), P(N.M),QC(N)

common /F2/DSP{N, M), RSP(N, M), DSH(N,M),RSH(N,M),DSQ(N,M),RSQ(N, M),

& DNP(N, M), RNP(N, M), DNH(N, M), RNH(N, M), DNG(N, M), RNQ(N, M),
& UN, M), V(N, M), ESTP(N, M), RSTH(N,M),RSTQ(N, M)

common /f3/DT, TOUC, TOUS(N, M), DM, SS(N, M}, SN(N, M), MU(N M), TANS(N, M)
& DEL, TAND{N,M),ALSF(N,M),PLOT,TITLE

common f4/BETA,GT(N,M),U0(M), HNP1(N, M), TTIME,TT HCOUNT, TOUSO(M),
& SSO(M), MUO(M), TOUP(N, M)

DIMENSION RSQS(N), DQUM), TEST(N), DIFF{N),EPS 1{N), UB(N),wi(N),d(N),
& ds(N), PERC(N), TH(N),LH(N)

c

C OPEN DATA INPUT

C

WRITE(*,*)'Pleass give me the START CODE’

READ(*,*) START
IF (START .EQ. 1) CALL READ1(OUT,CODE,H0,WIDTH,KSN,C,ITER)

IF (START .GT. 1) CALL READ2(OUT,CODE,HO0,WIDTH,KSN,C.ITER)
CALL READ(NP,NPI,NP2,ITER2,w,d,ds,PERC,TH,LH)
C MAKE HEADING
OPEN(4,FILE="hyd.out’, STATUS = ‘new’}
CALL PRT(WIDTH,KSN,C,ITER)

C CALCULATION OF GRID 51ZE5 AND CURVATURE
[=0
CALL GRID{I,RSQS,DQ)
I=1
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C GOTO 208

C

C CALCULATION OF THE NO. OF TIME STEPS
TT=TTIMEDT

L

C INITIAL STREAM-LINE CURYVATURE
DO1)=11)

DOl K=1.KK
RSTH{J),K)=RSH(.K)
RSETP(LK)=RSP{LK)
RETO.K)=RSQLK)

1 CONTINUE
C INTTIAL WATER DEPTH
IF (START .EQ. 1) THEN
DO 11 J=1 11
DO1l K=1.EK
H(J K)=HINIT(K)
11 CONTINUE
ENDIF
C
C START CALCULATION
PTIME = 0
VCOUNT = 0
IROUGH = 0
C INITIAL DISCHARGE CALCULATION AND UNWEST BDY)
C BOUNDARY CONDITION dp/ds = 0
Ql = 0.0
DO 2 K=1KK

IF(START .EQ. 2) DPW(K)=PF(LK)

IF(START .EQ. 3) THEN
DPW{K)=P{I1,K)
H(1,K)=H(J, K}

ENDIF

Ql = QI +DPW(K)*DNF(1.K)
2 CONTINUE
DO 500 T=1,TT

CORR=0

IF(T .GT. 1) VCOUNT=1
99 DO 300 J=1.1)

IF{J .EQ. 1) THEN

CALL WEBDY(G,J,Ql, VCOUNT,DQ,WIDTH KSN,C RSQS,T.ITER)
ELSE
CALL SECTNG,J, QI VCOUNT,DQ,WIDTH,KSN,C,R5Q5,T.ITER)
ENDIF
300 CONTINUE
IF(CORR .EQ. 1) THEN

CORR=CORR+1

CALL QQ

GOTO 99

ENDIF
IF{CORR .EQ. 2) GOTO 700
IF(VCOUNT .EQ. 1) GOTO 350
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i
C CALCULATION OF TRANVERSE VELOCITIES
CALL QQ
IF(VCOUNT .EQ. 0yTHEN
VCOUNT =VCOUNT + 1
GOTO 99
ENDIF
C STREAM-LINE CURVATURE CALCULATION
o
350 KEC=KK/2
360 IF{JUMP .LT. 20)THEN
DO 400 J=1,1
IF(KK .EQ. 2*KKC)THEN
TEST(I=RSTQ(I,KKC)
ELSE
TEST(J)=RSTH(J,KKC+1)
ENDIF
400 CONTINUE
CALL STRM
JUMP=JUMP+1
DO 401 J=1,JJ
IF(KK .EQ. 2*KKC)THEN ,
EPS1(J)= ABS(TEST({J)-RSTQU.KKC))
DIFF(J)= .01*ABS(TEST()))
ELSE
EPS1{})= ABS(TEST{J}-RSTH{J.KKC+1))
DIFF()= .01*ABS(TEST()))
ENDIF
IF(EPSI(J)) .GT. DIFF(J)) GOTO 360
401 CONTINUE
ENDIF
CORR=CORR+1
GOTO 99
C NEAR BANK EXCESS VELOCITY
CALL UBB(UB,JCRS)
€ CALCULATION OF BED TOPOGRAPHY
700 CONTINUE
IROUGH = IROUGH +1
IF(IROUGH .EQ. 30) THEN

CALL ROUGH(QI,H,U,DSH, DM, WIDTH,CHEL,JL,KK,IROUGH,SLOPE,
& NP,NP1,NP2,ITER2,w,d,ds, PERC,TH,LH)

IROUGH =0
ENDIF
CALL BED(G,CODE,T,STOP)
IF(STOP .EQ. 1) GOTO 80D

IF(T .EQ. 1) CALL LST(T,QI,H0,WIDTH,UB,JCRS)

C TABULATION OF RESULT
PTIME = PTIME+1
IF(PTIME .EQ. OUT)THEN
CALL LST(T,Ol HO,WIDTH,UB JCRS)
CALL INTER(T)
PFTIME = 0
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EMDIF
C
C INITIALIZATION FOR MEW TIME STEP
DO K=1KK
DO A J=1.10
H{I,K}= HNPI1{J,K)
3 CONTINUE
00 CONTINUE
800 CALL LST(T,QI, HO,WIDTH,UB,JCRS)
CALL INTER(T)
g08 CLOSE(4)
STOP
END

List of the antached subroutines

Mol SUBRGUTINE FOR READING INFUT DATA

SUBROUTINE READ{NP,NP1,NP2,ITER2,w.d,ds, PERC,TH,LH)

PARAMETER(N =50)
REAL*S w,d,ds, PERC, TH,LH

REAL A1,B1,C1,D1,E1,F1

INTEGER NP,NP1,NP2,MODEL,ITER2

DIMENSION w(N),d(N),ds(™), PERC(N), TH(N),LH(N)

OPEN(3,FILE="IN".STATUS="0LD")
CALL IREC
READ(3,*)NP,NP1 NPZ,ITER2

CALL IREC
DO 1 I=1,NP
READ(3,*)A1,BI
wil}=Al
dly=B1
| CONTINUE

CALL IREC
DO 2 1=1,NP1
READ(3,*)C1,D1
ds(l)=Cl1
PERC(D)=D1
2 CONTINUE

c

c
CALL IREC
DO 3 I=],NF2
REAING, *ELFI
TH(T)=EIl
LH(D)=Fl
3 CONTINUE

CLOSE(3)

RETURMN

END

Mol.. READING THE DATA FOR THE FILST SIMULATION; TIME LEVEL ZERD
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e

C

SUBROUTINE READ1(OUT,CODE, HO,WIDTH,KSN,C.ITER)
PARAMETER (N=100,M = 15,LL= 10}

REAL QI.DN,RSC,DSC,CHE,EPS, RHS, MU, DM, DT, TOUC,DEL, BETA, TTIME,
& PTIME,TOUP,HO,WIDTH,K5N,C,ERR,CHEI,RSCI, DSC1,CHEZ, RSC2,
& DSC2,CHE3,RSC3,D5C3,CHE4,RSC4,DSC4,CHES, RSCS, DSCS,CHES,
& RSC6,DSC6,CHET,RSCT, DSCT,CHES, RSCS,DSCS, CHES, RSCY,DSCY,
& S

INTEGER 1,11, KK, MM(M),CODE,tpl,tp2, TT,HCOUNT,PLOT,OUT,START,
&  TP3,TP4,TP5,TP6TP7,TP8,TPY,ITER,L TP

CHARACTER*S0 TITLE

common /fICHE,SLOPE,RSC,DSC,RN, DN, 11, KK, EQU,L, TR(LL), CHEL{N, M),
& RSCL{LL),DSCL{LL},HINIT{M), DPW{M),H(N,M),F(N M),

& Q{N, M), P(N M), QC(N)

common /f2/DSP(N, M), RSP(N, M), DSH(N, M}, RSH(N, M),DSQ(N,M),RSQ(N, M),

& DNP{N, M), RNP{N,M),DNH(N, M), RNH(N M), DNQ(N, M}, RNG{N, M),

& UGN, M), V(N M), RSTP({N, M), RSTH(N,M),RSTQ(N. M)

common [f3/DT, TOUC, TOUS(N,M),DM, S5(N, M), SN(N M}, MU{N M), TANS(N,M)
& DEL, TAND(N,M), ALSF(N,M},PLOT, TITLE

comemon /f4/BETA,GT(N, M), U{M), HNP1(N M), TTIME, TT, HCOUNT, TOUSO{M),
& SS0{M), MUMKM), TOUP(N,M)

L OPEN DATA INPUT

c

OPEN(3,FILE="HYD.IN",5TATUS="0LD")

CALL IREC

REAIDN3,*) CHE, SLOPE,RSC,RN,DSC.DN,JJ.KK,EQU,ITER
CALL IREC

READ(3,*) L (TP(I),I=1LL)

CALL [REC

READ(3,*) (DSCL(T) I=1,L)

CALL IREC

READ(3,*) (RSCL(I),I=1,L}

CALL IREC

REAIN3,*) DT, TOUC,DM,DEL, BETA, TTIME,OUT
CALL IREC

READ{3,* TITLE, PLOT,CODE, HO,WIDTH,KSN,C
CALL IREC

READ{3,*) (HINIT(K),K=1,kk)

CALL IREC

READ{3,*) (DPW(K), K= 1,kk)

CLOSE(3)

RETURN

END

Mal.. READING THE DATA FROM THE INTERMEDIATE TIME LEVEL; TIME STEP=TT

SUBROUTINE READZOUT,CODE, HO,WIDTH,KSN,C,ITER)
PARAMETER (N=100,M =15,LL=10)
REAL QI,DN,RSC,DSC,CHE,EPS,RHS,MU,DM,DT, TOUC, DEL,BETA, TTIME,
PTIME, TOUP,HO, WIDTH, KSN,C,ERR,CHE! RSC1,DSCI,CHE2, RSC2,
& DSC2,CHE3,RSC3,DSC3,CHE4,RSC4,DSCH,CHES, RSCS, DSCS, CHES,
&  RSCE DSOS CHET RSC7,DSCT,CHES,RSCS,DSCS, CHES,RSC9, DSCY,
51
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INTEGER L1 KK MM(M),CODE,tp1,1p2, TT,HCOUNT,PLOT.OUT,
& TP3,TP4,TPS,TPS, TPT, TPS, TPO,ITER,L. TP

CHARACTER*S0 TITLE
common (f/CHE, SLOPE,RSC,DSC, RN, DN, IJ,KK, EQU,L, TP(LL), CHEL{N,M),
& RSCL{LL},DSCL{LL), HINIT(M), DPW{M]), H{N, M}, F{N, M},
& QN M), P(N, M), QC(N)
common /f2/DSP(N, M), RSP(N, M), DSH{N M), RSH(N, M), DSQ(N, M), RSQ(N, M),
& DNP{N, M), RNP(N,M),DNH(N M), RNH(N M), DNQ(N M), RNQ(N M},
L U(N, M3, VN, M), RSTP(N, M), RSTH(N, M), RSTQ(N, M)
common [f3/DT, TOUC, TOUS(N, M), DM, SS{N, M), SN(N, M), MU(N, M), TANS(N, M}
& .DEL, TAND({N M), ALSF{N, M), FLOT, TITLE
common /F4/BETA,GT{N, M), UNM), HNP1(N, M), TTIME, TT, HCOUNT, TOUSO(M),
& SSO{M), MUGM), TOUP(N, M)
c
OPEN{},FILE="HYD.INT",STATUS="0LD"
CALL IREC
READ(3,*) CHE,SLOPE,RSC,RN,DSC, DN, JIL KK, EQU ITER
CALL IREC
READ(3,*) L(TP(),1=1,LL)
CALL IREC
READ(3,*) (DSCL(D),I=1,L)
CALL IREC
READ(3,*) (RSCL(),I=1,L)
CALL IREC
READ(3,* DT, TOUC,DM,DEL,BETA, TTIME.QUT
CALL IREC
READY{3,*) TITLE,PLOT,CODE, HO,WIDTH,KSN.C
Y CLOSE(3)

OPEN{Z,FILE="INTER.IN' STATUS="0LD"

DO 10 =111

READ{2,70) (P(J.K},K=1,KK),(H{J,.K),K=1,KK)
70 FORMAT (10E11.4,/,10E11.4)
10 CONTINUE

CLOSE(2)

RETURM

END

ek, SUBRCOUTINE FOR GRID SIZE AND CURVATURE CALCULATION

SUBROUTINE GRID{I,R5QS,DQ)
PARAMETER(N = 100,M=15,LL=10)
common /{/CHE,SLOPE,RSC,DSC, RN, DN, JJ KK, EQU,L, TP(LL),CHEL{N, M),
& RSCL{LL),DSCL{LL), HINIT(M),DFW(M).H(N,M),F(N,M),
& QN M), P(N,M).QC(N)
common /f2/DSPN. M), RSP(N, M), DSH(N, M), RSH(N, M}, DSQ{N, M), RSQ(N, M),
& DNP{N, M), RNP(N, M), DNH(N,M),RNH(N, M), DNQ(N M), RNQ(N M),
& UM, M), VN, M), RSTR(N, M), RSTH(N, M), RSTQ(N, M)
REAL CL,RN,DN,CHE, RSC,DSC,RSC1,DSC1,RSC2,DSC2Z, RSC3,DSC3, RSC4, DSCY
&  RSCS DSCS,RSCH,DSC6,RSCT,DSCT, RSCE, DSCE RSCY, DSCY
INTEGER 1,J,K,JJ KK, TP1,TP2,TP3, TP4,TPS,TPS, TP7,TPS, TP9, TP, L
DIMENSION DSQS(N), RSQS(N), DQ(M),D(M)

c

C CALCULATION OF GRID CENTRE LINE
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CL = (KK+1.)%0.5
¢ FOR N,DIRECTION GRID AND CURVATURE
DO 100 Je 1,17
DO 100 K=1,KK
IF (1 .EQ. 0) THEN
CHEL(j,k)=CHE
ENDIF
dnp(j, k) =dn
rpdj.k)=m
dnhi(j,k)=dn
rhij k)= m
dng(j,k)=dn
mq(j,.k)=m
100 CONTINUE
CFOR 5,DIRECTION GRID AND CURVATURE
TP1 = TP(1)
IF(TP1 .GT. II) TP1=JI+1
DO 1 J=1,TP1-1
dsqgs(j)=dsc*(] +(0.5-cl)*dn*rsc)
rega(j)=rsc/(1 +(0.5-cl)*dn*rsc)
DO 1 K=1,KK
d(k)=(k-l)*dn
depd(j, k)= dsc*(1 + d(k)*rsc)
rsp(} k) =rsc/{1 +d(k)*rsc)
dshiy, k) =dsp(j.k)
rshij, k) =rsp(j k)
dq(k) = (k +0.5-cly*dn
deq(j k)= dsc*(1 +dq{k)*rsc)
req(j, k) =rsc/(1 +dgik)*rsc)
1 CONTINUE
¢ after tuming point 1
IF(tpl .GT. jj) gota 1111
DSC=DSCL{1)
RSC=RSCL(1)
TP2=TR(2)
IF(tp2 .gt. jj) TP2Z=11+1
DO 2 1=TP1,TP2-1
daqs(j) = dsc*{1 + (0. 5-cl)*dn*rsc)
rsgs(j)= rsc/(1 +(0.5-cl)*dn*nsc)
DO 2 k=1,KK
dsp(j, k) = dsc*(1 + d(k)*rsc)
rspdj k) mrsc/{1 +d(k) *rsc)
dsh(j,k) = dsp(j K}
mshj k) =rsp(j k)
daq(j,k)=dsc*(1 ﬁﬁi‘;’;}
rgij k)= rsc/(1 +
2 CONTINUE
¢ afier turning point 2
IF(TP2 .GT. 1J) goto 1111
DSC=DSCL(Z)
RSC=RSCL(2)
TPI=TR(3)
IF(TP3 .GT. 1) TP3=1J+1
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DO 3 J=TP2,TP3-1
dsqs{j) =dsc*(1 + (0. 5-cl)*dn*rsc)
rsqs()) = rsc/(1 4+ (0, 5-c1)*dn*rsc)
DO 3 k=1.KK
dsp(i, k) = dsc*( 1 +d{k)*rsc)
rsp K= e 1+ dik i *rsc)
dehij k) = dsp(j.k)
rshij. k)= rsp(j.k)
degly k) =dse®( 1 +dg(k)*rsc)
rsq(j. k)= rsc/(1 + daglk)*rsc)
3 CONTINUE
¢ sfler turning point 3
IF(TP3 .GT. 1) GOTO 1111
DEC=DSCL{3)
RSC=RSCL(3)
TP4=TP{4)
IF(TP4 .GT. JJ) TP4=1J+1
DO 4 J=TP3,TP4-1
dsgs(j)=dse*(1 +(0.5-cl)*dn*rsc)
rsqs(i) = rscf( 1 +{0.5=c1)*dn*rsc)
DO 4 k=1 KK
disp(j. k) =dsc*(1 +d(k)*rsc)
rsp(j, k) = rsed{ 1 + dik)*rsc)
dsh(j k)=dsp(j.k)
rshij, k)= rsp(j, k)
daqj,k)=dsc*{1 +dg{k)*rsc)
rsq(j k) =rse/(1 +dg(k)*rse)
4 CONTINUE
¢ after tuming point 4
IF(TP4 .GT. 11 gote 1111
DSC=DSCL{4)
RSC=RSCL(4)
TP5=TP(5)
IF(TPS .GT. II) TPS=l]+1
DO 5 J=TP4,TP5-1
dsqs(jy=dsc*(1 +(0.5-cl)*dn*rsc)
rege(j) = rsc/{ 1 +{0. 5-<l)*dn*rsc)
DO 5Sk=1EK
dap(j. k) =dsc*(1 +dikc)*rsc)
raplj k) = rse/(1 +d{k)*rse)
dsh(j k) = dsp(j, k)
rshij k) =rip{},k)
dsq(j k) =dsc4(1 +dq(k)*rse)
regj k) =rsc/ {1+ dglk)*rsc)
5 CONTINUE
¢ afier turning point 5
[F(TP5 .GT. JJ} goto 1111
DSC=DSCLLS)
RSC=RSCL(5)
TP6=TP(6)
IF(TP6 .GT. JJ) TP6=1J +1
DO 6 J=TP5,TP6-1
dags(j) = dsc®( ] +(0.5-c1)*dn"rsc)
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rsqs()) = rsc/(1 + (0. 5-cl)=dn*rec)
DO 6 k=1KK
dsp(j k) =dsc*(1 + dik)*rsc)
rspl) k) e=rsc/(1 +d(k)*rsc)
dsh{j, k)= dsp(j. k)
reh() k) = rsp{j.k)
dsqij,k) = dsc*{1 +dg(k)*rsc)
req () k) =rec/{1 + dgq{k)*rsc)
& CONTINUE
¢ after urming point &
IF(TPS .GT. 11} gota 1111
DSC=DSCL(6)
RSC=RSCL{A)
TPT=TP(T7)
IF(TFT JGT. II) TPT=11+1
DO 7 I=TP6,TP7-1
deqs(j) = dsc*(1 +(0.5-¢1)*dn*rsc)
rsqs(j) =rsc/(1 +(0.5-cl)*dn*rsc)
DO 7 k=1,KK
dsp(j, k)= dsc*(1 +d(k)*rsc)
rsplj.ky=rsc/{1 +d(k)*rsc)
dshyj, k) = dsp{j k)
:l'ﬁh-l:i !k}_ :ﬂ:{i'k]
dsq(j, k) = dsc *(1 +dq(k)*rsc)
rag(}. k) = rsc/{ 1 +dqfk) *rse)
TCONTINUE
¢ afler mrming point 7
IF(TPT .GT. IJ) GOTO 1111
DSC=DSCL(T)
RSC=RSCL(T)
TPE=TP{8)
IF(TP8 .GT. IJ) TPR=1J+1
DO & J=TP7, TP8-1
dsags(j) = dsc*(1 +(0.5-cl)*dn*rsc)
rsqs(j) =rse/(1 +(0.5-cl)*dn®rsc)
DO 8 k=1,KK
dep(j.k) =dsc*(1 +d(k)*rsc)
(3, k) mrsc/(1 + d(k)*rse)
dsh(j,k) = dsp(j, k)
ribij, k)= rspij.k)
dag(j, k) =dsc*(] +dg(k)*rsc)
regl) k)= raci( 1 +dq(k)*rsc)
B CONTINUE
¢ after wrning point 8
IF(TPS .GT. JI) GOTO 1111
DSC=DSCL(E)
RSC=RSCL(E)
TPY=TP(9)
IF(TP9 .GT. 17) TP9=11+1
DO 9 1=TP8, TF9-1
daqe(j) =dec*(1 +(0.5-cl)*dn*rsc)
rodga(j) = rwc/( 1 4 (0.5-cl)*dn*rsc)
DO 9k=1KK
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L]

dsp(}, k) =dsc®(1 + dik)*rsc)

rep(i, k) =rsc(1 +d(k)*rsc)

dshi{j, k)= dsp{).k)

rehi( K= r5p(3, )

dsqy )= dsc*(1 + dg(k)*rsc)

rsq(j,}) = rsc/(1 +dq(i)*rec)
CONTINUE

¢ after uming point ¥

IF(TP? .GT. JJ) GOTO 1111
DSC=D5CLIY)
RSC =RSCL(9)

DO 10 J=TP3,1]
dsgs(j)=dsc*{1 +(0.5-cly*dn*rsc)
rsqs(j) = rsc/(1 +(0.5-cl)*dn*rsc)

Do 10 k=1,KK

daplj k) =dsc=(1 +d{k) *rsc)
rsp(j k) = rsci(1 + dil)*rsc)
dshij. k) =dsp{j.k)
rshj k) = rsp{j.k)
dsqfj. k) =dsc*(1 +dg(k)*rsc)
rsqlj, k) =rsc/(1 -+ dqik)*rsc)

10 CONTINUE '“IRTC

1111 RETURN

Hof..

END Watcs, Mesen rech sod
Trainiog Centl®
SUBROUTINE FOR CALCULATION AT WEST ROUNDARY

SUBROUTINE WBDY(G,J,QI,VCOUNT,DQ,WIDTH,KSN,C,R3QS,T,ITER)
PARAMETER(N = 100,M=15,LL=10)

LOGICAL OLDM

common /fFICHE, SLOPE,RSC,DSC, RN, DN, J1LKK EQU,L, TF(LL),CHEL(N,M),

& RSCI(LL), DSCL{LL)HINIT(M),DFW{M), H(N,M},F{N.M},
& q{Hlu}lHN!M]‘me}

commaon [f2/DSP(N,M),RSP(N M), DSH(N M), REH(N M},DSQ(N, M), RSQ{N M),

& DNP{N, M), RNP(N, M), DNH(N, M}, RNH(N, M), DNQ(N, M), RNQQN, M),
& U, M), V(N M) BRSTP(N, M), RETH(N M) RETQ(N, M)

DIMENSION FNW(M),DQS(N),FP(N),QP(N),COEF 1(M),COEF2(M),COEF3(M),
& COEF4(M),COEFS(M),COEFS(M), COEF62(M), COEF7(M), COEF8(M),
& COEF82(M), COEF3(M),COEF92(M), COEF10(M), COEF11(M),

& COEF12(M),COEFZ2(M), COEF13(M), COEF23(M), TM6(M), AA(M),
& ABOM), AI2(M), COEFA1(M),COEFA2(M),COEF A3(M), DQ(M) RSQS(N)

iC

REAL Al AZ A3 RHS TMI1,TM2Z,TM3, TM4, TMS5, TM6, TM7,QN1,0N2,QN3,

& QN4,PNI1,X1,X2,A31,A32,HS1,HS2,P1,P2,P3,P4,PS5,P6,
&  P7,P8,P9,01,02,03,04,05,06,Q07,08,H251,H252,Q,KSN.KSNT1,
&  KSNT2,H2S3,H1s4 H285 WIDTH,C,BB1,BB2,BB3

C
C

250

INTEGER I,ILJ K, VCOUNT,COUNT,T,ITER,TP.L

WEST BOUNDARY ; DPW(K)=P{J-1,K): DQS{J)=Q), K-1)=0.
DQS(J)= 0.
COUNT = 0
DO 10 K= KE
FNW(K)=DPW(Ky*DPW(K)H(LK)
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10 CONTIMUE
€ ASSUME F{JK)
IF (T .EQ. I)THEN
F(L1)=FNW(I)
P11} =DPW(1)
ENDIF
C START CALCULATION
Do-4d K=1,KK-1

HSl=(H{J.K)+H({J + 1.K) + HJ,LK + 1) + H(J + 1K + 1374

HEZ={(H{.K)+ H{I.LK + 1))/2

COEF1(K)= 1/H(j,k + 1)+ (dnq(j + 1,k) +dng(j.k))*

& (RSTP(j.k + 1)+ RSTP{j, k)M (8*hsl) +
& dshij.k 4+ 1)*mh{j,k+ DA2*H{G.k+ 1)

COEFX(E)=g*dsh(j k+ 1)/ (cha*che*H(j.k + 11*H(j, k + 1)*2)

COEF3(K)=-1/Hij.k) + (dng(j + 1,K)+dnq(j. k) *(RSTP( .k + 1)+
& RSTP(1.k)V(8*hs1)-dsh(j, k)*mh{j k)/(2*H{}.k))

COEF4(K) = g*dsh(j k)/(che*che*H(j, k) *H(j.k)*2)

COEFS(K) = FNW(KH(T, K)-FNW(K)*DSH({J, Ky*RNH{J, K} (HT K)*2)-
& frrwdk + 1VH(, k + 1) + FNW(K + 1)*DSH(J K + 1)*RNH{LK + 1V
& (HLK + 1)*2)

AAK)= QLK+ 1)*Q(LE+1)+Q0, Ky*QiLK)
IF (K .EQ. KK-1) THEN
H283=H{J, K+ 1)*H({ILK+1)
ELSE
H253 = (H{T,K + 2)*H({J K +2)+ H{LE+ D*H{JL K + 1)}2
ENDIF
H254 =(H(J,K + 1y*H(1LK + 1) + H{LK)*H{J,K))/2
BB1={ABS(2*DO(K))/WIDTH)**C
IF(K .EQ. 1) THEN
ABK)= QI Ky=Q(1,K)+DQs(I)*DQs{)
H285= H(I,K)*H(J.K)
BE2 = {ABS(2*(DOE)-DNY/WIDTH)**C
KSNT2=KSN/DNH(J, K)*(H254*RSTQ(I K)*(1-BB1)
& -HIS5*RSQS(N)*(1-BB2))
ELSE
AB(K)= OJ, K)y=Q1,K)+ QU1 K-1y*Q{J) K-1)
H255 = (H{J,K-1)y*H{],K-1) + H{JKy*H(J,K))/2
BE2={ABS(2*DQ(K-1))/ WIDTH)**C
KSNT2=KSN/DNH{] K)y*(H254*R5TQ() K)*(1-BB1)
& -H255%RSTO K-1)%(1-BB2))
ENDIF
BA = (P(LK+1)*P(J,K+ 1)+ DPW(K + 1)*DPW(K +1))
BB = P(JK)*P(I.K)+ DPWIHPDPW‘CM
BB =(ABS{2*DQ(K + 1 )VWIDTH)*
KSNT1 =KSN/DNH(], K+ 1y*H253*RSTQ(), K + 1)*(1-BBJ)
& -H2S4*RSTQ), K)*(1-BB1))
COEFAI(K)=DSH(J, K+ 1)/(2*°H{J K + 1)*H{J,K + 1))*K5NT1
COEFA2(K) = DSH(J,K)/(2*H(J, K)*H(J,K))*KSNT2
COEFAK)=F{J-1,K + 1)*COEFAL(K)-F(J-1,K)*COEFAZ(K)

Al =COEFI{K)+ COEF2(K)*(1 + AA(K)/BA)**0.5 + COEFAL(K)
A2 = COEFIK}-COEF4(K)*(1 + AB(K)/BB)**0.5-COEFA2(K)
A3] = COEFS(K)-COEFHK)*FNW(K)*(1 + AB(K)/BB)**0.5+
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&  COEFUKP*'FNWK + 17%1 + AA(K)BA)**0.5
ATZ(K) = (FNW(K + 1) + FNW({K)*DNQ,K)

& *(RSTP(j.k+ 1)+ RSTP(j, k) (H52*4)
Ad=A31+ AIHK)+COEFAYNK)

Pl={DPW{K+1)+P{J.K + 1)+ DPW(K) + P{LK))/4
P = (DPWIK + 11+ DPWK )2

P6 = (DPW(K) + P{K))’2

PT=(DPW(K+1)+PJ K+ 1)/72

PE=(DPW{K+ 1)+ DPW(K))/2

PO= (P, K+ 1)+ PF(J,K))/2

IF(VCOUNT .EQ. 0) THEN

PS = (P(J,K + 1)+ P{J,K))/2
ELSE

Pi={P+ LE+1)+P{J+ 1K) +PJ K+ 1)+ P K4
ENDIF

IF (K .EQ. KK-1) THEN
PA=(DPW(K+ 1)+ P(IK+1)/2
H3i= H{J,K+1)
ELSE
P3=({DPWK+2)+PLE+2) +DPWE+ D+ PLEK+1))4
H3={H{J,K+2)+H{,K+1))y2
ENDIF
IF(K .EQ. 1) THEN
P2=({DPW(K)+P{J,K))/2
ELSE
P2 ={DPW(K-1)+P{J],K-1)+DPW(K)+P{J,K))/4
ENDIF
Q2=(Q(.K+ 1)+ Q,K))/2
Q3=0(1,K)
Q4 ={Q(J + 1, K} +QiJ K))i2
Q22 =({Q(,K+1)*QU K +1)+Q(), K)*Q(I,K))/2
Q23 =0 Ky* Q] K)
Q24 =(Q(1 + 1,K)*Q(J + 1, K) + Q1 K)*Q(J K))/2
Q25 = (O, K + 1)*Q(1, K + 1)+ QL EK)*Q(ILK)N/2
Q27 =(Q( + 1K+ 1)*Q0 + LK+ 1)+ QLK+ 1)*QLE+ 1)+
& Q0+ 1, EK*QU + 1K)+ K1, K)4
c
IF(K .EQ. 1) THEN
Q1= (DQS(F) +Q(LK))/2
Q21 =(DQS(N*DQS(N) + QU K)*Q(]L K2
Q26 =(DQS(*DQS(N+ QLK Q(I.K)2
Q28 = (DQS(I + 1)*DOS(J + 1)+ DS *DQS(T) +
& QU1 + 1,Ky*QU + 1K)+ QL K)*Q(1. K))/4
ELSE
Qi = (QJ, K-1)+ Q1 K))p2
Q21 ={1, K-11*Q(, K-1)+ Q) K)*QiJ K))M2
Q26 ={Q(J, K-1)*Q(J, K-1) + Q{1 Ky*Q{J K))/2
Q2R () + 1, K-1*Q(7 + 1L K-1) + QUL K-17*Q(J K-1) +
& Q)+ 1,K)*Q0) + 1K)+ QU1 Ky*Q(), K)) 4
EMDIF
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C

C

Hl=(H{J,K+ 1)+ H{JL,K)2
He=H{),K+1)
H5=H{J K)
HE = (H{1,K+ 1)+ H{J,K))/2
Hi=(H(J+ 1K+ 1)+H{J+1,K)72
H8=(H{J+ 1, K+ 1)+ H{J K+ 1))2
HY = (H({J + 1K)+ H(J, K2
H281 =(H{J + 1K+ 1*H(J+ 1, K+ 1)+ H{I + 1, K}*H{T + 1, K} +
& HOLK + 1*H(LK + 1)+ HiTLE)*HL KN /4
H282 = (H(JLK + 1*H(L K+ 1)+ H{ILKy*H(1LK)2

IF(X .EQ. 1) THEN
TM1= I/H{J, K)*DSH(I,KYDNH(I,K*(P14Q(], K)/HI1-P2*DQS)/

& H{I,K))

ELSE

TM1= 1/H(J,K)y*DSH(J, K)/DNH(J,K)*(P1*Q(, K)/H1-P2%Q( K-1)*2/
&  (H(LK-1)+H(ILEWN
ENDIF

COEF6(K)=2*Q1*DSH(J, K)*RSTH{LK)/(H(, K)*H(ILK)
COEF62(K) = Q21*DSH(J, K)*RNH(I K)/(H{J, K)*H{.K))

TM2 = COEF6(K)*P6-COEF62(K)

COEFT(K)=-1/H({J,K + 1)*DSH{J,K + 1)//DNH({JI,K+ 1)
TM3 = COEFT(K)*(P3*Q(J,K + 1)/HI-P1%Q(, K)/H1)

COEFR(K) = -2+Q2*DSH(J, K+ D/HLE + 1*H(L K+ 1))*RSTH{LK+1)
COEF82(K)= Q22*DSH(I, K+ 1/*ENH(LK + IW/{H{LK +1)*H K+ 1))
TM4=COEFS(K)*P7 + COEF82(K)

COEF9(K) =-{DNQ{J,K) + DNQU, K)/(DSP(J, K+ 1)+ DSP(J,K))*H52)
COEF92(K) = P4*Q(J, K)/H4
TM5 = COEF9(K)*(P1*Q(J,K)/H1-COEF92(K))

TM6(K) = -1 /HS2*(Q25/H4-Q26/H5)-2*PE*Q3*(DNQ(J, K) + DNQ(I, Ky)/(2*
&  H2S2y*RNP(J,K+1)+RNP(,K))2

COEF10(K) = -Q23*(DNQ{J,K) + DNQ(J, K))/(2*H282)%(RSTQU K) +
& RSTQ,K))/2 + 1/HS1%(Q27/HE-Q28/HS)

COEF11(K)=(DNQJ + 1,K} + DNQ(, K)V(HS1(DSP(J, K + 1)+ DSP{,K))
TM7 = COEF 10(K) + COEF11(K)*(P5*Q(J + 1, K)/H7-P1*Q{J K)/HI)
COEF12(K) = 2+Q45(DNOQ( + 1, K) + DNQ{I, K))/(2*H251)*

& (RNP(J,K + 1)+ RNP(JLK)/2

COEF22(K) = Q24%(DNQU + 1,K) + DNQU,K))/(2*H251)*

& (RETQ(I + 1,K)+RSTQU,K))/2

TME = COEF 12(K)*P9 + COEF22(K)
P21 = (DPW(K + 1)*DPW(K + 1)+ DPW(K)y*DPW(K))/2
P22 =(P(J, K+ 1)*P{J, K + 1)+ P K)*PLK)2
COEFI3K)= -G*DNQUJ,K)(CHE*CHE*H252*H51)
COEF23(K)= G*{DNO( + 1,K)+DNQ(,K))/(2*CHE*CHE*H251*HS1)

TM9 = CORF13(K)*Q3%(023 + P21)**0.5 + COEF23(K)*Q4*(Q24 + F22)*%0.5

RHS = TM] +TM2+TM3+TM4+TMS + TMG(K) + TM7 + TMB +TM9
F(J,K + 1) = (RHS-A3-F(J, K)*A2)/Al

40 CONTINUE

GOTO 110
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C CORRECTION FOR Fl.1)
100 CONTINUE

IF (1 .GT. 10\THEN
OLDM = .FALSE.
AUX = QP(-QF(-1)
IF(ABS(AUX/QD .LT. 0001/ THEN
OLDM = .TRUE,
ELSE
F(J, 1= (FP(-FP{I- 1))/ AUX * (QL-QP(IN + FP(T)
1E(F(.1) .LT. 0) OLDM = .TRUE.
TF((F(J, 1FF{) .GT. 10) OLDM = TRUE.
ENDIF
ENDIF
IF ((1 .LE. 10) .OR. (OLDM)) THEN
F(J, 1)=FP{Iy*((0. T5*Q1 +0.25*QP{I)/QP{T)
ENDIF
PO =(F(L 1 (HJ + 1, 1)+ HJL DY2)**0.5

DO 41 K=1,KK-1
BA=FLK+1PP.K+ 1) +DPWEK + 1)*DPWIK + 1)
BB =P . K)*P(J . K) + DPW(K)*DPW(K)
Al=COEFI(K)+ COEF2(K)*(1 + AA(K)/BA)**0.5 + COEFA1(K)
Al =COEF3}(K)-COEF4K)*(1 + AB(K)VBB)**0.5-COEFA2(K)
A3l =COEFSK;-COEF4(K*FNW(KI*(1 + AB(K)/BE)**0.5+

&  COEF2KI*FNWIK +1)*%1 + AAK)BA**0.5
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A3=A31+A32(K)+ COEFAI(K)

Pl=(DPW{K+1)+P{J.K+ 13+ DPW{K) + P K))V4
Pé=(DPW(K)+P(J, K2
PFI=(DPW(E+1)+PJK+1))/2

Po=(P{J. K+ 1)+ PI K2

Hl=(HJ K+ 1) +H({1, K2

IF{VCOUNT .EQ. 0) THEN
P5=({P(].K+1)+P{I,K))2
ELEE
Pi=(P(J+1,K+1)+P{J+ 1K)+ P(LLK+ 1)+ PF{I.K))/4
ENDIF

IF (K .EQ. KK-1) THEN
Pi={DPWIK+1)+P{ILK+1))72
Hi= H(LK+1)
ELSE
P3 = (DPW(K + 25+ P, K +2) + DPW{K + 1)+ P{J,K -+ 1))/4
H = (H{JLK +2)+ H{LK+ 13)2
ENDIF
IF(K .EQ. 1) THEN
PL1=(DPW(K)+ P KN
ELSE
P2 = (DPW(K-1)+ P(J,K-1) + DPW(K) + P(]K))/d
ENDIF
IF(K .EQ. 1) THEN

TM1= 1/H(,K)*DSH(I, K)/DNH{,K)%(P1*Q(), K)/H1-P2*DQS(I)
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& H{J,K))
ELSE
TMI= L/H(Q L Ky*DSH(I,KVDNH(ILK)*P1*Q( K)/H1-P2*Q() K-1)%2/
& (H(TE=1) + H{L K33
ENDIF
TM2= COEF6(K)*P6-COEF62(K)
TM3 = COEFT(K)*(PI*Q1 K + 1)/H3-P1*Q(J],K)W/H1)
TM4=COEFS(K)*P7 + COEF82(K)
TMS = COEF(K)*(P 1 *Q(),K)/H1-COEF92(K))
HY=(H{J+1.K+1+H{J+1.KW?
TM7=COEF10(K)+ COEF1 L(K)*(P5*Q(J + 1,K)/H7-P1*Q(] K)WH1)
TMB=COEF12(K)*P%+ COEFZ(K)
P21 =({DPW(K+ 1)*DPW(K + 1)+ DPW{K)*DPW{K))/2
P22w (P(1LE + 1)*P{LEK + 1)+ P(LEKPPILEN2
TM9= COEFI13(K)*Q3*(Q23 +P21)**0.5 + COEFZ3(K)*Q4*(Q24 + P22)**0.5
EHS = TMI1+TM2+TM3+ThM4+TM5+TMEE)+TM7+TME+TMY
F(LE + 1) =(RHS-A3-F{J,K)*AZ)/ AL
41 CONTINUE
C
C CHECKING OF THE DISCHARGE (INTEGRATING OVER THE WIDTH)
10 DO 50 K=1.KK
P(IL Ky = (F(TLE*(HT + LK)+ HILEK)2)**0.5
ULK)=P(J, K)*Zi(H + 1K)+ H{ILK]))
50 CONTINUE
QC(T)=0.0
DO 60 K=1,KK
QC{T)=0QC(J)+P(J, K)*DNH(1,K)
60 CONTINUE
EPS= ABS(QC(J)-QN/Ql
DIF = .0001
IF(EPS .GT. DIF)THEN
COUNT = COUNT +1
DO 200 1 = COUNT
FE(I) = F{l.1)
QP(I) = QC{J)
200 CONTINUE
IF(COUNT .LT. ITER) GOTO 100
ENDIF
RETURN
END

Hob.. SUBROUTINE FOR CALCULATING I th SECTION

SUBROUTINE SECTJ(G,,Ql, YCOUNT,DQ,WIDTH,KSN,C,RSQS, T,ITER)
PARAMETER(N=100,M=15,LL=10)

LOGICAL OLDM

REAL A1,AZ,A3,RH5, TM1,TM2,TM3,TM4,TM3,TM6,TM7, TMB,QN1,QN2,QN3,
& QN4,PNLX1X2Z.A31L, A32,HS1,H52,Q1,Q2,Q03 /4, H151,H252,Q1 H2s5,

& P] 1pz.p3.p4.F5.P'ﬁ'.P?rPE-Fg-q:1 rm-qﬂnqiiuﬂ!-ﬂ-ﬂT ﬂuu

&  H1,H3,H4,HS, H6,HT,HS,H9,AA,AB,BB,BA KSNT1, KSNT2, H283, H254,
& WIDTH,KSN,C,BB],BB2,BE3

INTEGER LI1,J,K KK, VCOUNT,COUNT, T,ITER,L, TP

DIMENSION DQS(N),FP(N),QP(N),COEF 1(M),COEF2(M),COEF3{M), COEF4(M),

255



RIVER PLAN-FORM MOVEMENT IN AN ALLUWVIAL PLAIN

& COEFS5(M),COEF&(M), COEFS62(M), COEFT(M), COEF8(M), COEFEI{M),
& COEF#{M),COEF¥2(M),COEF 10{M),COEF | 1{M},COEF 1 2(M),DQ(M},
& COEF22(M),COEFIA(M). COEF23(M), TMG(M), AA(M), AB(M). AJ2(M),
& COEFal{M),COEFa2(M),COEFai{M),RSQS(N}

common /[/CHE,SLOPE,RSC,DEC, RN, DN I KK, EQU, L, TRLL).CHEL{N.M],

& RSCL(LL), DSCL{LL), HINTT(M), DPW{M), H(N M), F(N.M).
& QN M), P(N M), QC(N)

common /FUDSP(N, M), RSP{N, M), DSH{N, M), REH(N, M), DEQN, M), RSQ(N, M),

& DNE{N, M), RNP(N, M), DNH(N. M), RNH{N, M), DNQ(N, M), RNO(N. M),
& DN, M), VN, M), RSTP(N, M), RETH(N. M), RSTQ{N, M)

c
i

SOUTHERN BANK (DOQS(N = Q) K-1)=)
DQS{T)=0.

count = )

C ASSUME F(J,K)

IF (T .EQ. 1)THEN
F(J,1)=F{J-1,1)
P{1,1)=P{I-1,1)

EMDIF

C START CALCULATION

DO 40 K= 1,KK-1
HS2 =(H{I,K) + H{J-1,K) + R{LLK+ )+ H{J- 1K+ 1))/4
[F{) .EQ. INTHEN
H51={H{LE)+ H{J.K+ 1)/'2
COEFI(K)= 1/H(j,k+ I} +dnq(j, K)*(RITP{,k + 1)+
RETP(j. k3 /(4*hel)+dsh(j k+ 1)*

&
& rahj k+ DA2*H(, k+ 1))

COEF3(K)=-1/H(j,k) +dnq(j, Ky (RSTP(,k+ 1)+
RSTP(,k))/(4*hs1)-dshij,ky*mhij k) /(2*H(j k)
ELSE
HS1=(H{J,K)+H{ +1.K} +HILEAD+HI+1,KE+1))/4
COEF1(K) = L/H(j,k-+ 1)+ (dng(j + 1K) +dng( k) *RSTPG k+1) +

& RSTP(G,k))/(8*hal) +dsh(j k+ 1)*
& b,k + 1AZ*H( k +1))

COEF3(K)==~1/H(j,k) + (dng{j + 1,k) +dng(j.K)*(RSTP( k+ 1) +

& RSTP{j k) (8*hal )-dsh(j,k)*mh(), kKN (2*H().k)

ENDIF

COEF2(K)=g*dsh(j,k + 1)/(che*che*H(j,k+ 1)*H{j.k + 1)*2}
COEF4(K)=g*dsh(j,k)/(che*che*H{j K)*H(}.k)*2)
COEFS(K)=F(J-1, KWH(, K)-FQ-1, Ky*DSH(I K)*RNH(I,K)/

& (H(J,K)*2)-F{J-1,k + 1)/H(j .k + 1) +F{J-1, K+ 1)
& *DSH(ILK + 1)*RNH(, K + D(HL K + 1)*2)
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AACK) =00, K+ 17*QU K+ 1)+ Q1 Ky*Q(J.K)
IF (K .EQ. KK-1) THEN
H283=H{J,K+ 1)*H(J, K+ 1)
ELSE
H253 = (H(J,K +2)*H{1,K + 2)+ H{I,K + 1)*H{LK + 1))12
ENDIF
H254 = (H({I,K + 1)*H(J,K + 1)+ H{J,K)*H{J, K))12
BB1=({ABS(2*DQ(K))/WIDTH)**C
IF (K .EQ. 1) THEN
AB(K) = Q(], K)*Q(],K) + DQS(1)*DQ5(J)
H285=H{J,K)*H(J.K)
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C

&

BB2=(ABS(2%(DQ(K)-DN))/WIDTH)**C
KSNT2 = KSN/DNH(J, K)y*(H2S4*RSTO(, K)%(1-BB1)
“H2S5*RSQS({J)*(1-BB2))

ELSE

&

"‘-E{K} i Q“ rK}’Q{J K+ Q{Irk' 1 }‘WFE' 1}
H258 = (H(J, K-1)*H{J, K-1) + H{T, K)*H(L,K))/2
BB2 = (ABS(2*DO(K-1))/WIDTH)**C
KSNT2=KSN/DNH(I,K)*(H2S4*RSTO(, K)*(1-BB1)
-H255*RSTQ(],K-1)%(1-BB2)

ENDIF

BA=P{LK+ 1)*P{LK+1)+P{J-1, K+ 1)*P(J-1,K+1)
BB =PI, K)*P(1.K)+P(I-1,K)*P{J-1,K)

BE3=(ABS(2*DQ(K + 1))/ WIDTH)**C

KSNT1=KSN/DNH(J,K + 1)*(H2S3*RSTQ(1, K + 1)*(1-BB3)
-H2S4*RSTQ(I, K)*(1-BB1))

COEFAL(K)=DSH{J,K + 1)/(2*H(J, K + 1}*H{] K + 1))*KSNTI
COEFA2(K)=DSH(J, K} (2*H(T, K)*H(J, K))*KSNT2
COEFAYK) =F(J-1,K + 1)*COEFAI(K)-F(I-1, K)*COEFA2(K)

&

&

Al=COEFI1{K)+COEF2(K)*(1 + AA(K)/BAY**0.5+ COEFAI(K)
A2=COEF3(K)-COEFHK)*(1 + AB(K)/BE)**0.5-COEFAX(K)
A3 =COEFS(K)-COEF4(K)*F(J-1,K)*(1 + AB(K)//BE)**0.5 +

COEF2(K)*F(I-1,K + 1)%(1 + AA(K)NBA)**0.5

AJUK)=-{F(J-1, K+ 1)+ F(J-1,k))*(DNQ{J-1.K) +

DNQU, K 2*(RSTP(j,k + 1)+ RSTP(j k))/(H52*4)
A3=A3[ + A32(K)+COEFANK)

Pla=(P(J-1,K + 1)+ P{JLE + 1)+ P01 K)+ (LK)
Ph=(P(J-1,K)+P(JK))/2

Pl=(P{J-1, K+ 1)+ PO K+ 13)/2

Ph=(PF(].1,K + 1)+ P(J-1,K))/2
Fo=(P(1,K+1)+P(],K)p2

IF(VCOUNT .EQ. 0) THEN

FS=(P(LK + 1)+ (K2

ELSEIF(J .EQ. J)) THEN

ELS

PS=(P(LK + 1)+ P(JL K2
E

PE=(P{I+1, K+ 1)+ P(1+1,K)+ P(LK + 1)+ PUL K4
IF

END

IF (J .EQ. 2) THEN

P4=(DPW(K + 1)+ P(J-1,K + 1)+ DPW{K) + P(J-1 K))/4

ELSE
Pa=(P(J-2,K + 1)+ PU-1,K+ 1)+ PU-2,K)+ P(J-1, K))/d
ENDIF

IF (K .EQ. KK-1) THEN

Pl (P(J-1,K + 1)+ P(L,K + 1))i2
Hi= H{1 K+ L)

ELSE

Pi=(P()-1,K +2) + P(J,K +2)+P(J-1, K+ 1)+ P(LK+ 1)
H3=(H(1 K +2) + HUL K+ 1))02

ENDIF
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IF(K .EQ. 1) THEN
PI=({PI-1.E)+HILEN2
ELSE
P2 (P10, K-104 POLE- 104 PEI- 1K) & POLK 4
ENDIF
Q2 ={C{1L K+ 1)+ 01, K)W2
Q3 = {Q(1-1,K) + QI K)y/2
Q22 =(Q1, K + 1*Q1LK + 1) + Q1L K)=Q(1, K2
Q23w (-1, Ky*QUJ-1, K)+ Q{1 K)*O(J K))/2
Q25 =(Q-1,K+ 121K + 1)+ QLK + 1L K+ 1)+
&  O-1,K)*Q0-1,K) + QL K)y=Qq1 Ky
C
TF(K .EQ. 1) THEN
Q1 =(DQSN + Q) K2
Q21 =(DQSI*DOQSI) + QLK QU.K)p21
Q26 =(DQS(J-1)*DQS(J-1)+ DOSIY*DQS(J) +
& Q-1 K)*Q(1-1,K) + QI KO0, K))id
ELSE
Q1= (Q(,K-1)+Q{I.KN"2
Q21 = QU K-1y* Q01 E-1) + QLK) QLK) 2
Q26 = (Q(1-1, K-11*Q(1-1 K-1)+ QL K-1*Q].K-1) +
& Q-1 K001, K) + Q1L K)y=Qq1LK) w4
ENDIF

Hl ={H(, K+ 1}+H{ILE}2
Hé=[H{J-1, K+ 1}+H{JLK+1))/2
HS = (H({J-1,K)+ H{J,K))/2
H6 = (H({J-1,K+ 13+H{J-1, K)}2
H282=(H(I-1,K + 1)*H(J-1,K + 1)+ H(J-1, KY*H{J-1,K) +
& HLE + 1)*H{J, K + 1)+ HiJLK)*H({TL K4
o
IF{J .EQ. J)THEN
Q=001 K}
Q4= QUL Ky, K)
Q27 = (N1, K + 1)*Q(LK + 1)+ QULE*QULKN/2
IF(K .EQ. 1) THEN
Q28=(DQSN*DOSN + QL KI*QULK)V2
ELSE
Q28w (O, K-112001LE-1) + Q1L K)*Q()LK))/2
ENDIF
H7={H({J,K+1)+H{J K2
HE=H{,K+1)
H9=H{],K)
H251 =(H({J,K + 1)*H) K+ 1)+ H{LK)*H{L K))2
ELSE
04 ={Q() + 1,K)+0Q(J) K))/2
Q24w (O + 1,K)*Q01 + 1K)+ Q1L KYy*Q(),K))2
Q27w (O + 1, K+ 100+ LK+ 1)+ QLK+ 1/QULE+ 1)+
& Q1 4 1KYy QU + LK) + Q) Ky* Q1L K/
IF(K .EQ. 1) THEN
Q28 = (DQS( + 1)*DOS() + 1)+ DQSUIT*DRS(T) +
& Q4 + 1,K)*Q0 + 1K) + QUL K)*Q(1, K))/d
ELSE
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c

C

c

Q28 =(QJ + 1, K-1)*Q(J + 1 K-1) + QT K-1)*Q{1, K-1)+
& QU + 1LKY*Q + 1K) + Q{1 K)* QI K)4
ENDIF
HT = (H{J + LK+ 134+ H{J + 1,K)72
HE=(H{J+ 1K+ D+ HLE+ )02
H9=(H({T+ 1, Ky+H(J,K))/2
H2S1={H{J+ LK+ 1*HJ + LK+ 1+ Hi + 1, KyH + 1,K) +

& HOL K+ TPHL K + 1)+ H{LK)*H({J,K))4

ENDIF

IF(K .EQ. 1) THEN
TM1= L/H(I,K)*DSH(I,KVDNH(I K)*(P1*0(), K H1-P2*DQS(T)/

& H{ILK))

ELSE

TMI= 1/H{,K)*DSH(L,KVDNH,K)*P1*Q(, KVH1-P2*Q(),K-1)*2/

&  (HLK-1)+H(JLKD)

ENDIF

COEFS(K) =2*Q1*DSH(I, K)*RETH(I, K)V{H(LK)y*H{ILE)
COEF62{K)=Q21*DSH(] KY*RNH{I,K)/HJLK)*H(I,K)
TM2=COEF6&(K)*P6-COEF62(K)

COEFT(K)= -1/H{J K+ 1*DSH(]K + 1)/ DNH(L K+ 1)
TM3=COEFT(K)*(F3*Q(, K+ 1)/H3-P1*Q(], K)/H1)}

COEFR(K)=-2+Q2*DSH{J, K+ 1)/(H({J K+ 1)*H{I,K + I))*RSTH(J.LK+ 1)
COEFS2(K)=Q22*DSH(I, K + I)*BNHJ, K + I)/HILK + 1)*H(J,K + 1))
TM4=COEFS(K)*P7 + COEF82(K)

COEFHK) = {DNQ{J-1,K) + DNQ(LKNIDSPJ-1K + 1)+ DSP(J-1, K))*H52)
COEFS{K)=P4*Q(J-1, KVH4
TM5=COEFWK)*(P1*Q] K)/H1-COEFI2(K))

TM&(K) =-1/HS2*%(Q25/H4-Q26/H5)-2*PE=Q3*(DNQ(J-1.K) + DN K)/(2*
&  H2S2)*(RNP(J-1,K+ 1)+RNP{J-1,K))/2

COEF10(K) =-Q23%(DNQ(J-1,K) + DNQ(ILK)/(2*H2ZS2)HRSTQ{J-1,K) +
& RSTOQNI K2+ L/HS1%(Q27/HE-Q28/HY)

IF(J .EQQ. JI) THEN
COEF11{K)=DNQQ, KM HS1%DSHLE+ 1)+ DSEJLKND)
TM7=COEF10(K)+ COEF 1 1{(K)*(P5*Q(} KWHT-P1*Q(J, K)/H1)
COEF12(K) = 2+Q4*DNQULK)VH25 1 *RNP(LK + 1)+ RNP(LK))/2
COEF22(K)=0Q24*DNQ(J K)H2S1*RETQ(],K)
COEFI3(K)=G*DNQ(), K)/(CHE*CHE*H251*HS1)
ELSE
COEF11(K)=(DNQ(J + 1,K)+ DNQ{ K)V(HS1 %(DSP(LK + 1)+ DSP(J,KN)
TM7=COEFINK)+ COEFLL{KY*{(P3*Q(J + |, KYHT-P1*Q(J K)WH1)
COEF12(K)=2*Q4*(DNQ + 1K)+ DNQUL KV (2*H251)*
& (RNP(J,K + 1)+ RNP(LK)2
COEFZAK)=Q24*(DNQI + 1K)+ DNQUL KV (2*H251)*
& (RSTQ{ + 1K)+ RSTQ(, K))i2
COEF23(K)=G%DNQ + 1K)+ DN K)/(2*CHE*CHE*H25 1*H51)
ENDIF

TME = COEF12(K)*P9 + COEF22(K)
P21 =(P(J-1,K + 1)*PJ-1,K + 1) + PUJ- 1L, K)*P(J-1,K))r2
Hz "'m-T-K + lelK * I-:' +H’1E}*HJIK}M
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COEFI2(K)= -G*([DNQ{I-1,K)+ DNQ(] . K))/(2*CHE*CHE*H252*H51)
TM% = COEF1 MKY*Q3%(Q23+ P21)**0.5 + COEF23HK)*Q4*(Q24 + P22)**0.3
RHS = TM1+TM2+TM3 4 TM4+TM5 + TM6{K) + TM7 + TME + TM9
F(1LK + 1)={RHS-A2-F(J K)*AZ) Al
40 CONTINUE
GOTO 110
C
C CORRECTION FOR F{I,K)
100 CONTINUE WRTC
IF (1 .GT, 1THEN
ﬂmM = IFMSE. "Wl{i.‘r? | [t i i | .rﬂ
hux bon qu_qPﬂ'_l} lrawm iﬂ-H gagra
IF(ABS(AUX/QT) .LT. .0001)THEN
OLDM = .TRUE.
ELSE
F(J,1)=(FP()-FP{I- 1)} AUX * (QI-QP{T)) + FP{I)
IF{F{J,1) .LT. 0) OLDM = .TRUE.,
IF{(F({J,1)/FP(T)) .GT. 10) OLDM = .TRUE,
ENDIF
ENDIF
IF {1 .LE. 10) .OR. (OLDM}) THEN
FiJ,1)=FP{Iy*({0.75*Q1 + 0.25*QP{)VQP(T))
€ F(J, 1)=FR{I*QLQP(I)
ENDIF
IF(J .EQ. INTHEN
P(1, 1= (F(T, 1)*H(T, 1))**0.5
ELSE
P, 1) =(F(J,15H{J+1,1)+H{J, 1))/ 2)**0. 5
ENDIF

e —

DO 41 K= 1, KK-1
BA=P(JK + 1)*P(],K+ 1)+ P(J-1,.K+1)*P(J-1,K+1)
BB=P{J,K)*P(J,K)+ P(J-1,K)*P{J-1,K)
Al=COEF1{K)+ COEF2{K)*(1 + AA(K)/BA)**0.5 + COEFA1(K)
AZ=COEF3{K)-COEF4(K)*(1 + AB(K)/BB)**0.5-COEFA2(K)
A3 =COEFS(K)-COEF4(K)*F(J-1,K)*(1 + AB{K)/BB)**0.5 +
&  COEFXK)*F(J-1,K+1)%1+AA(KNBA)**0.5
A3=A31+AIK)+ COEFAIK)

P1=(P({J-1,K + 1)+ P, K+ 1)+P(J-1,K) + P(].K))/4
Pé = (P(J-1,K)+P(J K))2

PT=(P(J-1, K+ 1)+ MLE+ 1072

P9=(P(J,K + 1)+ P{LK)M2

Hl=(H{J K+ 1)+ H{J K)2

IF(VCOUNT .EQ. 0) THEN
PS=(PU,K + 1)+ P{LKIN2
ELSEIF() .EQ. JJ) THEN
PS=(P(J,K + 1)+ P{K))2
ELSE
PS = (P(J+1,K+ 1)+ P( + 1K)+ PULK 4 1) +P(LK))4
ENDIF
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IF (K .EQ. KK-1) THEN
Pis(P{J-1. K+ 11+PLK+ 12
Hl= H({I.K+1)
ELSE
Pl=(P(I-1, K+ 2)+PLEK+2)+PJ-1 K+ 1)+ P{IL K + D)4
Hi=(H{J,K+2)+H{LK+ 1))2
ENDIF
IF{K .EQ. 1) THEN
P2={P{J-1,K)+P(J.K))"2
ELSE
P2=(P(J-1,K-1)+P(J,K-1)+ P{J-1,K)+ P(J,K))/4
ENDIF :
[F(K .EQ. 1) THEN
T™M1= 1/H(J, K)*DSH{J,K)DNH{I, K)y*(P1*Q1,K)/HI-P2*DQS()/
& H(LK))
ELSE
T™Ii= IVH{J.K)*DSH({J KYDNH{J, K)%P1*Q{J K}/ H1-P2*Q{J K-1)*2/
& (H{LK-1)+H{J.K))
ENDIF
TM2=COEF&(K)y*P6-COEFE2(K)
TM3=COEFT(K)*(P3*Q{J. K+ 1/H3-P1*Q{I.K)/HI)
TM4=COEFE(K)*F7 + COEFEX(K)
TMS=COEF(K)*P1*Q(J, K)HI1-COEFFX{K))
[F{¥ .EQ. JT) THEN
H7=(H({I K+ 1)+H{J K2
TM7 = COEF10(K)+ COEF11{K)*P5*Q(I K}H7-P1*({J, K)/H1)
ELSE
Hl={H{J+1 K+ 1}+H{J+1,K)2
TM7=COEF1K)+COEF1 1{EK)*P5*Q(J] + 1, KYHT-P1*Q{I.K)/HI1)
ENDIF
TME=COEFI2(K)*P9 + COEF22(K)
P21 =(P(J-1,K+ 1y*P{J-1,K+ 1)+ P(J-1, K}y*P(J-1,K))12
P22=(P(J K + 1)*P(J,K + 1)+ P(LE)*P(1,K))2
TM9=COEF1 }K)y*Q3*(Q23 + F21)**0.5 + COEF23(K)*Q4*(Q24 + P12)**0.5 -
FHS = TM1+TM2+TM3I+TM4+TMS+TM&(K)+ TM7 + TME+TM9
F(LK+ 1)={RHS-A3-F(1.LK)*AZ)fAl
- 41 CONTINUE
C CHECKING OF THE DISCHARGE (INTEGRATING OVER THE WIDTH)
HODO 50 K=1,KK
IF(J .EQ. II) THEN
P{LK)=(F(J,K)y*H(J,K))**0.3
uﬂlﬂ‘”l“]“ﬂ|m
ELSE

P(1LK) = (F(J,K)y*(H{T + 1,K) + HJLK))/2)**0.5
UL K)=P(1, Ky*2/(H(J + 1K)+ H(],K))
ENDIF

50 CONTINUE
QCih=0.0
DO 60 K=1,KK
QC{N=QC(N + P(J,Ky*DNH{],K)
% CONTINUE

EPS= ABS(QC(N-QN/QI
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DIF = 0001
IF(EPS .GT. DIF)THEN
COUNT = COUNT+1
D0y 200 1 = COUNT
FP(T) = F{1.1)
QP = QC
200 CONTINUE
4 write(®, *Yocount? in the sect). for="count
IF(COUNT LT, ITER) GOTO 100
ENDIF
RETURN
END
Ha?., SUBROUTINE FOR Q-COMPONENTS

SUBROUTINE QQ

PARAMETER(N = 100, M = 15,LL=10)

common /f/CHE,SLOPE, RSC, DSC, RN, DN JL KK, EQU, L. TR(LL), CHEL(N,M),
& RSCL(LL), DSCL{LL),HINIT(M),DFW (M), H(N.M),F(N,M),

& Q(N.M),P(N,M),QC(N)

common /f2/DSP(N,M),RSP(N,M),DSH(N, M}, RSH{N,M),DSQ(N, M), RSQ(N, M),
& DNP(N, M}, RNP(N, M), DNH(N, M), RNH(N, M), DNQ(N, M), RNQ{N M),
& UGN, M), V(N, M), RSTE(N, M), RSTH(N, M), RSTQ(N, M)

dimension dqs(n)

c
DO 20 J=1,1]
DO 30 K=1,KE-1

des{j)=0

[F{J .EQ. 1 .AND. K .EQ. 1) THEN
QU K)= (dpwik)*dap(j,k)-P(j, k) *dnp(j.k))/dsq(j k)
¢ q(j ) = 0.
2

€1

ELSEIF{J .EQ. 1) THEN
QULK) = (dpwik)*dnp(,K)-P(.K)*dnp(i.K)+ QG k-1)*
- qﬁ-ﬂ ={L

ELSEIF(K .EQ. 1) THEN ) .
Q1K= (P{j-1,k)*dnp(j-1,k)-P(j.k)*dnp{), k))/dsqiy, k)
& qﬂ!n-ﬂ'

ELSE
QUK = (P(j-1,K)*dnpdj-1,K)-P(j k) *dnp(j k) + Q. k-1)*
& daglj,k-1))dsqj, k)
c qlj,K)=0.
ENDIF
VLK) = QL K)*2IHLK)+ HLK+ 1))
30 CONTINUE
QUL EK)=0.
".rﬂ !m - ﬂ.
20 CONTINUE
RETURN
END
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—

Kok SUBROUTINE FOR SEDIMENT TRANSPORTATION AND BED LEVEL CHAMGES.

¢ This is dz/dt=C at J= 1 (Upstream trestment)
SUBROUTINE BED(G,CODE, T ,STOP)
PARAMETER(N=100,M = 15,LL=10)
common /fICHE,SLOPE,RSC,DSC, RN, DN}, KK, EQU, L, TP(LL),CHEL(N, M),
& RSCL{LL),DSCL(LL), HINIT(M), DPW (M), H(N,M),F(N, M),
& Q(N, M), P(N M), QC(N)
common /fLDSP(N, M), RSP(N, M), DSH(N, M), RSH(N, M), DSQ{N, M), RSQ(N, M),

& DNP{N, M), RNP(N, M), DNH(N, M), RNH(N, M), DNO(N, M), RNOUN M),

& LN, M), VN, M), RETE(N, M), RSTH(N, M), RSTQ(N, M)

commen /f3/DT, TOUC, TOUS(N, M), DM, S5(N, M), SN(N, M}, MU(N, M), TANS(N,M)
& .DEL, TAND{N M}, ALSF(N,M), TITLE, PLOT

common /f4/BETA, GT(N, M), UO(M) HNPI(N, M), TTIME, TT, HCOUNT, TOUSO(M),
& SS0(M).MUOGM), TOUP{N M)

REAL MU MUO,DM,DT,DEL,EETA, TTIME, a,40,b,b0,C, TOUS, TOUP, TOUC.E,
& ERR,DIFF,DH,C3

INTEGER J,JJ,K KK, TT.PLOT,CODE, T,STOP,TP,L

DIMENSION GOM), TOUPO(M)

DM = DM / 1000.
E=4.0
IF(T .EQ. 1) THEN
DO 1 E=1KK
TOUSO(K) =UNK)*UNKW(CHEL(1, K)*CHEL{1,K)*DEL*DM)
TOUPKHK) =TOUSKHE)*TOUSHK)*0.4+0.06
1 CONTINUE
ENDIF
DO 10 J= 1,07
DO 11 K=1,EK
TOUSI Ky= U, Ky*U{J, K)(CHEL(), K)*CHEL(],K)*DEL*DM)
TOUP(],K)=TOUS(J Ky*TOUS(J, K)*0.4 +0.06
11 CONTINUE
Cl This is power law
IF(CODE .EQ. 1) THEN
E=1.
b= 5.0
IF(T .EQ. 1) b0 = 5.0
(2 This is EH formuls (b=5.0}
ELSEIF(CODE .EQ. 2) THEN
E= 1l
ELSE
goto 100
ENDIF
C3 = SQRT(DEL*G*DM)*DM
DO 21 K=1,KK
IF (TOUS (J,K) .LT. 0.06) THEN
SS(K) = 0.
5501, K)= 0.
ELSE
IF(T .EQ. 1) 550(K)=0.1*CHEL(1, K)*CHEL(] KYG*TOUSKK)**2.5
& 3% 1 + E*(H(2, K)-H( 1, K)/DSP({1,K))
IF(J .LT. II) THEN
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SS(J,K) = 0.1*CHEL(J Ky*CHEL{J K} G*TOUS(J,K)**2.5*
& CIH 1+ EHH + 1, K)-H{LEKNDEPIKD
ELSE
S5(J,K) = 0.1*CHEL{J, K)y*CHEL{J, K)/G*TOUS{],K)**2.5*
& CI%( 1 +E*(H({I, K)}-H({-1,K)VDSP{I-1,K)
ENDIF
ENDIF
21 CONTINUE
GOTO 200
c
C MPM formuls
100 DO 23 K=1,KK
IF(T .EQ. 1) THEN
MUKE) = TOUPKENTOUSKE)
€ B = I*MUNK*TOUSHEWMUNK)*TOUSHERTOUC)
al = MUNK*TOUSHE)-TOUC
IF(a0 .LE. 0)THEN
SSO(K)=0.
ELSE
SS50(K) =8, *SQRT(DEL*G*DM**3.)*a**1.5%(1 + E*(H(2,K)
& -H{1,K)¥DSP(1,K))
ENDIF
ENDIF
MUJLK) =TOUP(, KNTOUS(,K)
b o= IEMUY K)*TOUSE KV MUJ K TOUS(LE)TOUC)
c E = TOUC/{MU{J.K)*TOUS(], K)-TOLUC)
& = MULEPTOUS K)}-TOUC
IF(s .LE. 0) THEN
S5, EK)ym=0
ELSEIF(J .LT. JJ) THEN
§5(1,K)=8.*SQRT(DEL*G*DM**3)*a**] 5%(1 + E*

& (H + 1LX-HILEIWDSPLEK)D
ELSE
S8(1, K)= 8. *SQRT(DEL*G*DM**3)*a**] 5%(] +E*
& (H(LE)»-H(I-1,K)DSPI-1,K))
ENDIF
23 CONTINUE

C This is the calculation of bed shear stress direction model
200 DO 25 K=1,KK
ALSF{J, K)=0.6 * H{(J.LK)*CHEL(J,K)/G**.5
c
€ GT will be changed when tuning is nécessary
c
GT{J,K)=0.53/TOUS(] K)y**0.50
GO(K)=0.53TOUSOK)**0. 50
IF( .EQ. 1 ) THEN
TAND(J,K)= -BETA * (H{J +1,K)+H(JLK)*(RSTH(J + 1K) + RSTH{J,K))
ELSE
TAND{J, K)=(TAND{I-1,K)*{ALSF(J,K}DSH{J,K}-0.5-BETA*H{J,K)*
& RSTH(J,K)M(ALSF(J, KYDSH(I K) +.5)
ENDIF
25 CONTINUE :
C This is the calculation of sediment transport in transverse direction,
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DO 30 K=1,KK-1
IF{J .EQ. 1) THEN
TANS(LK)= VL K)*4/(U(1,K) + UK + 1) 4 UOK) + UK + 1)) +

& (TAND{I K)+ TAND(LK + 1))/2 +(GT, Ky + GTILEK+ 1)+
& GO(K) + GO(K + 1))/4*(H(I, K + 1)-H{J,K))/DNQ(U LK)
E&Nu JK)=TANS(I Ky*(55(1,K) +55(1,K + 1) + S50(K) + SSO0(K + 1))/4
E

TANS(ILE)=V{J,Ky*4/(U(LK)+ U K+ D)+ UJ-1,K) + Ug-1,K+ 1))
+(TAND(J,K)+TAND{J,K + 1)+ TAND{J-1,K}
+TAND(J-1K + 1)/4 +(GT({J K)+ GT(J-1,K) 4+ GT(J K+ 1)
+GT(J-1,K + 1))/4*(H{, K+ 1-H{J, KIWVDNQULK)

- g}g-m- TANS({ILE)*(S5(],K)+SS(J,K + 1)+ 85(J-1,K) + 85(J-1 K+ I))/4

BRe

30 CONTINUE

SN(LEKK) = 0.

LL LR L L L]

e

ook o ok

- -
L This is bed level calculation for no sediment input condition.
¢ Add this part only when s0=0 condition.
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C This is the bed level calculation for s0=EQUILIBRIUM condition

DO 40 K=1,KK
IF(J .EQ. 1 .AND. K .EQ. 1) THEN
HNP1{I,K)=(S5(], K)*DNP({J,K)+ SN{J,K)*D3Q{J . K))/
& (DSH(J, K)*DNH(I,K)*DT +H({LK)
ELSEIF(J .EQ. 1 .AND. K .GT. 1) THEN
HNP1(J,K)=(SS{J,K)*DNP{ILK) +
& (SN({T, K)*DSQULK)}-SN{ E-1* DS K-1))
& (DSH(J, Ky*DNH(J,K))*DT + H(J,K)
ELSEIF(J .GT. 1 .AND. K .EQ. 1) THEN
HNP1(J,K)=((55(], K)*DNP(J, K)-55(J-1, Ky*DNP(J-1,K)) +
& (SN(1LEK)*DSQ(LENY
& (DSH(J, Ky*DNH(J,K))*DT+H({1.K)
ELSE
HNP1(J,K)={{$5(J. K)*DNP{J,K)-85(J-1, K)*DNP({J-1,K)) +
(SN{J,K)*DSQI,K)-SNIL K-1*DSQ{LE- 1))
(DSHL KP*DNHI,EK)*DT +H(JLK)
ENDIF
40 CONTINUE ,

Ll b

Ll

R

DO 40 K=1,KK
IF(J .EQ. 1) THEN
HNP1(J,K)=h{j.k)
ELSEIF(J .GT. 1 .AND. K .EQ. 1) THEN
HNP1(J,K)=((S5(J, Ky*DNP(J,K)-55(J-1, K)*DNFP(I-1,K)) +
& (SN(J,K)*DSQL KN/
& (DSH{J,K)*DNH(J,K))*DT + HiJ,K)
ELSE
HNPL{J,K)=((55(), K)*DNP{J K)-85(J-1, K)*DNP{J-1,K)) +
& (SN(J,K)*DSQU, K)-SN(J, K-1)*DSQUI, K- 1))/
& (DSH{.K)*DNH(1,K))*DT + H(K)
ENDIF

= 40 CONTINUE

10 CONTINUE
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C To reduce the run=time thit is one of the devices
STOP=0
IF(T .GT. 1) THEN
DO 50 =511
[ DO 50 =111
DO 50 K=1,KK
DH = ABS(HNPI(J,K)-H(J,KN/H{I,K)
IF{DH .GT. EQU) GOTO &0
50 CONTINUE
STOP = |
ENDIF
60 CONTINUE
DM = DM*1000.
RETURN
END

Hof  SUBROUTINE POR CALCULATION OF BEDLOAD BY JF METHOD

SUBROUTINE BEDLOAD(TETA, PHEB,DPHER)
REAL*E TETA,TETAZ, TETAC,BETA,PI
REAL*S PHEB,PHEE?, DPHER, PFAC,FFAC2,CC

C

C CALCULATION OF P VALUE

e
Pi=3.1415%2654
TETAC=0.047
BETA=0.65
CC=PI/6.*BETA/TETA-TETAC)
PEAC=1./(1. + CO**4.)%%0.25

C PHE-B
PHEB = 5. *PFAC*DSQRT(TETA}-0. T*DSQRT(TETAC))

C DPHE-B
TETA2=TETA +0.01
CC=PI/6.*BETA/(TETAZ-TETAC)

PFACZ = 1. /(1. +CC**4 }**0.25

PHER2 =5.*PFACZ*(DSQRT(TETA2)-0.7*DSQRT(TETAC))
DPHEB=(PHEB?2-PHEE)/0.01

RETURN

EXD

Holl....... SUBROUTINE FOR DUNE DIMENSION

SUBROUTINE DUNE(PHEB,DPHEB, PHES, DPHES, TETA,h,dS0, Wer, Wsus, THpp,
& TH,LH,NFP2)
PARAMETER(N =50)
REAL*8 PHES,DPHES, Wer, Waus,d50,h, LDH1,LDH2
REAL*E DHh,PHEB, TETA,DPHEB,C1,C11,C2,Ubf
REAL*E DELTh,DelDH,LDH,UUS, THpp, TH,LH
INTEGER NF2
DIMENSION TH(N),LH(N)
C CALCULATION
dS0=dS0/1000.
DHh= PHEB/(2*TETA*DPHEB + DFHES))
€ FOR SMALL VALUES OF TETAP(THM), DIFFERENT EQUATION HAS TO BE USED
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C INSTEAD OF EQUATION (4.2).
C CHECK FOR THE GREATER VALUE OF LDH IN THE CRITICAL REGION
IF(TETA .LE. 0.2 .AND. TETA .GE. 0.047)THEN
CALL INTEPO(I,TH,LH, TETA,LDH, NP2
LDHI=LDH
C CHECK POINT ; LHD FROM EQUATION
Cl = hi(13*2%d50)
Ubf = B.342.5*DLOG(CI)
C2 = Wer M Waeus
DELTh = C2%02/13,*Ubf
DelDH = DELTh/DHh
LDH2 = (16.*PHEB +(16. + DelDH}*PHES)/(PHEB + PHES)
IF(LDH1 .GE. LDH2) THEN
LDH = LDH1
ELSE
LDH = LDH2
ENDIF
ELSE
Cl1 = hi(13*2*d50)
Ubf = §.3+2.5*DLOG(CI)
C2 = Wer/Wsus
DELTh = C2*C2/13.*Ubf
DelDH = DELTWDHh
LDH = (16.*PHEB+(16. + DelDH)*PHES)/(PHEB + PHES)
ENDIF
Cl1 = hi(2.+d50)
UUf = 6. +2.5*DLOG(CL1)
THpp = 0.5*UUMUIUMDHNWLDH
50 =d50+1000.
RETURN
END

Hell. SUBROUTINE FOR LOCAL ROUGHNESS (varisbls roughmess)

SUBROUTINE ROUGH(QL,H1,U1,DSH1,DM,W1,CHEI,JJ,KK,IROUGH,S1,
& NP,NPI1,NP2,ITER2,w.d,ds, PERC, TH,LH)
PARAMETER (N=100,M=15)
REAL*8 PHES, PHES2, DPHES, Wer, Wsus, Ui, Wer2, PERC2,dcr2, dsus?,
&  deus,wsus?,DEL,G
REAL*8 PHEB,DPHEB,CHE,FF,MANN, THE, TETA, TETAC, U, X, UUf,Uf. HYDR
REAL+8 RED,QS, U2, THpp,C1,C2,TH2,SLOPE, q,h,d50, WIDTH, TETA2
REAL*8 w,d,ds, PERC, TH,LH,FTILE,FT2,dcr, PERCR,Qo,hn, DIF
REAL Q1,H1 .UI.DSHI,DM,WI.CHI:EI_E :; oven
INTEGER, 1, NP,NP1,NP2,MODEL, .
DIMENSION w{N),d{N),ds(N),PERC(N), TH{N), LH(N), H1(N, M), UL(N,M),
g DSHI(N,M),CHE1(N,M)
CSTART CALCULATION
g = QIl'w1
d50 = Dk
DEL = 1.65
G = 9.8 .
CFIRST GUESS OF FRICTION VELOCITY Uf & TETA FOR PLANE BED
DO 1001 = 1,01
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DO 100 K = 1,KK
IF(J .EQ. 1T) THEN
SLOPE = (H1(1,K)-H1(J-1,K)/DSHIJ-1,K)
IF(SLOPE .LE. §1) SLOPE=5§1
ELSE
SLOPE = (H1{J+1,K)-H1{J,K))/DSH1{J.K)
IF(SLOPE \LE. 51) SLOPE=5§1
ENDIF
h = HI{JK)
U = ULJLK)

DO 200 I=1,ITER2
X = hi(Z.*d50/1000.)
UUf = 6. +2.5*DLOG(X)
uf = Uruuf
Cl = DEL*G*d50/1000.
TETA = UPURCI
C E&F

c

IF(TETA .LE. 0.047) THEN
THE= TETA
GOTO 2000
ENDIF
CALL BEDLOAD(TETA,PHEE, DPHER)

Wors1f
CALL INTEPO{I,w.d, Wer,dor, NF)
CALL INTEPO{,ds,Perc,der, Percr, NP1}
FTILE = Percri2.
CALL INTEPONT, Perc,ds, FTILE dsus, NP1)
CALL INTEPO(Ld,w,dsus, Wsus, NP)
C CALCULATION OF SUSPENDED SEDIMENT
CALL DIEG(Wer, Wsus,h,d50, TETA,PHES)

C
C CALCULATION OF "DFHES®
TETA2= TETA+0.01

C2= TETAZ*C]
Werl= DSQRT(C2)
CALL INTEPOI,w,d,Wer2, der2 NF)
CALL INTEPO{I,ds, Perc, dor2, Perc2 NP1}

FT2=Perc2i2.
CALL INTEPO(, Perc,ds, FT2,dsus2, NP1}
CALL INTEPO{I,d,w,dsus2, Wsus2 NF)

CALL DIEG(Wer2, Wsus2,h,d50, TETA2, PHES2)

DPHES= (PHES2-PHES)/0.01

CALL DUNE(PHEB,DPHEB,PHES, DPHES, TETA,b,d50,Wer, Wsus, THpp,
& TH,LH,NF2)

THE= TETA*(1.+THpp)
© CALCULATION OF ROUGHNESS COEFF FOR ALLUVIAL BED N DUNE FHASE

2000 CONTINUE
Uf2 = THE*CI
Uf = DSQRT(UfZ)

C ROUGHNESS COEFFICIENTS
FF = Uf*UM2. (U*U)
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UUf = U/Uf
CHE = DSQRT(2.*G/FF)

hn = THE*del*d50/1000./SLOPE
qn = CHE*DSQRT(hn*SLOPE)*hn

DIF = DABS{q-gn)/q
IF(DIF .GT, .0001) THEN
h = 0.75%+0.25%mn
EMDIF
200 CONTINUE
CHE1{],K)=CHE
CEF
IF(THE .LT. 0.047) THEN
QS= 0.1E-09
ELSE
QS= (PHEB +FPHES)*C3
ENDIF
100 CONTINUE
RETURN
END

Hall.. SUBROUTINE POR HOT START
C SUBROUTINE FOR INTERMEDIATE INPUT DATA COLLECTION
SUBROUTINE INTER(D)
PARAMETER(N=100,M=15,LL=10)
REAL QI,DN,RSC,DSC,CHE, EPS, RHS, MU, DM, DT, TOUC, DEL,BETA, TTIME, §
INTEGER 1,JJ,KK,MM(M),VCOUNT,ITER,tpl,tp2, TT,HCOUNT,PLOT,TE,L
common /f/CHE,SLOPE,RSC,DSC, RN, DN, I, KK, EQU,L, TP(LL),CHEL{N, M),
& RSCL{LL),DSCL(LL),HINIT{M),DPW(M),H{N,M),F(N.M),
& QUN, M), P(N,M),QC(N)
common /F2/DSP(N, M), RSP(N, M), DSH{N, M), RSH(N, M), DSQ(N, M), REQ(N, M),
& DNP(N,M),RNP(N,M),DNH{N, M), RNH(N, M), DNQ(N. M), RNQ(N, M},
& Um.ijvm.M}-Rm{N-M}-ammnmIRW-H}
common /f3/DT, TOUC, TOUS(N, M), DM, S5(N, M), SN{N, M), MU(N, M}, TANS(N,M)
& DEL, TAND{N,M), ALSF(N,M),PLOT,TITLE
tommon /f4/BETA,GT(N,M), UO(M), HNP1({N, M), TTIME,TT,HCOUNT, TOUSO{M),
S & SSOOM), MUGM), TOUP(N M)
OPEN(2,FILE="INTER.IN',STATUS="NEW")
WRITE (2,20} I
20 FORMAT("TIME STEP",14)
DO 10 J=107
WRITE (2,70) (P(J,K),K=1,KK),(HNP1{J K) K= 1.KK)
70 FORMAT (10E11.4,/,10E11.4)
10 CONTINUE
CLOSE(2)
RETURN
END
:;au_,,_ SUBROUTINE FOR SKIPS COMMENT CARDS [N INFUT DATA

SUBROUTINE IREC
CTER*1 REC
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DO 101 = 1,99
READ (3,20) REC
IF (REC .NE. 'C") GOTO 30
10 CONTINUE
20 FORMAT{A1)
30 RETURN
END

Held., SUBROUTINE FOR NEAR BANK VELDCITY EXCESS

SUBROUTINE UBB(UB,JCRS)
PARAMETER (G=9.81,N=100,M = 15,LL=10)
common /HCHE,SLOPE,RSC,DSC,RN,DN.JIL KK, EQU,L, TF(LL), CHEL{N M),
.2 RSCL(LL),DSCL{LL), HINTT(M), DFW{M), H(N M), F(N, M),
& Q(N,M), PN, M), QC(N)

DIMENSION UBMN), UM, M)

INTEGER L2, JCRS

REAL CL,KKC,UCL

s

C NEAR BANK EXCESS VELOCITY
DO 700 J=1,11

DO 700 K=1,KK
U,k =P{j.kVH{j.k)
700 CONTIMUE
C CALCULATION OF CEMTRE LINE VELOCITY
CL = (KK+1.)%0.5
EKC=KKR?
JCRS=0
DO 750 1=1.07
IF(KK .EQ. 2*KKC)THEN
L2=CL+.5
UCL ={U{J,L2)+U(J L2-13)/2
ELSE
LZz=CL
UCL=U(I,L2)
EMNDIF
UB(N=U{L EE)}-UCL
IF{J .GT. 10 . AND, UB() LT, 0.)THEN
IF(JCRS .EQ. 0) JICRS=]
UB(n=UCL-U{I.1)
ENDIF
T50 CONTINUE
RETURN
END

Mols... SUBRCOUTINE POR SUSPENDED SEDIMENT CONCENTREATION FROFILE

SUBROUTINE DIEG(Wer, Wsus, h,d50, TET A, PHES)
REAL*E Plac, Wer, Weus, PHES
REAL*E PI,BETA,C1,DELTAb,Ch,z,ZETA,DELT,Al,A2,z]
REAL*S8 C0,001,C2,C3,04,08,CC, A
REAL#*8 TETA, TETAC,h,d50

C Caleulation
Pi= 3.141592654
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TETAC=0,047
BETA =0.65
dS0 =d50/1000.
CC=PIl/6.*BETATETA-TETAC)
Plac= 1./(1. +CC**4.)*%0.25
C*Ch
C Cl=ALUB
Cl= (TETA-TETAC-PI/6. *BETA*Pfac)/0.027/ TETA/2.65
IF{C1.LE.0) THEN
PHES= 0
GOTO 1000
ENDIF
DELTAb= DSQRT(CI)
Ch= 0.65/(1. + 1./DELTAR)**3.
C*Uf,z, ZETA AND DELT
r= 2. 5"Ws"Wer
ZETA= 13.*Wsus/Wer
DELT= 0.192%h
Al= 2, *450/h
A2= DELT/d50:2.
gl= 1.2
C* Calculation
Cl=8.5*A1/z1 *(A2**z1-1.)+ 2. 5*Al/z1 *(AZ**z1 DLOG{AZ)-1./21)+ 1./21)
CO= 0.808*ZETA
COl= A2**z
C2= (5.7+2.5*DLOG(AZ)VCO1*%(1-DEXP(CO))/ZETA
C3=16.1/CO1*((1. + ZETA*0. 192)/ZETA/ZETA-DEXP(CUY*(ZETA + 1. /ZETA*+2)
Cd= B.05/CO1*(0.192%0.192/ZETA +2%(1. + ZETA*0. 1920 ZETA/ZETA
& -DEXP{CO)*(3./ZETA +2./ZETA/ZETA) )
Qs= Wer*Ch*h*(C1 +C2+C3-C4)
CO= 1.65%9,81+d50*+3,
FHES= Qs/DSQRT{CO)
1000 CONTINUE
C NOT TO MIX THE DIMENSION

d50=d50*1000.
RETURN
END

Molé.. ., SUBROUTINE FOR INTERPOLATION OF THE FUNCTION

SUBROUTINE INTEPO{J, X, FX,X1,FLIMAX)
PARAMETER(N = 50)

INTEGER LJ,IMAX

REAL*8 X,FX,X1,Fl

DIMENSION X(N),FX(N)

IF(X1 .LT. X(1))THEN
F1=FX(1)
GOTO 70

ELSEIF(X1 .GT. X{IMAX))THEN
Fl=FX{IMAX)
GOTO 70

ELSE
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DO &0 I=1,IMAX
IF(X1 .GE. X(I) .AND. X1 .LT. X(I1+1))THEN
F1={FX({I+ 1-FX{(MMX{I + D-X{M)HX1-2D+FX(M
GOTO 70
ENDIF
B0 CONTINUE
ENDIF
70 CONTINUE
RETURN
END

Mol?... SUBROUTINE FOR TABULATION OF RESULT

SUBROUTINE LST(T,QLHO, WIDTH,UB,JCRS)
PARAMETER(N =100, M=15,LL=10)
REAL QI,DN,RSC,DSC,CHE,EPS, RHS, MU, DM, DT, TOUC,DEL ,BETA, TTIME,S
INTEGER T.JJ,KEK, MM(M), VCOUNT,ITER, tp1,tp2, TT, HCOUNT,PLOT,L,TP,L2,
& JCRS
DIMENSION RH(N,M),RU{N, M), UB(N)
comman f/CHE SLOPE, RSC,DSC, RN, DN JILKK . EQU, L, TR{LL),CHEL{N M),
& RSCL(LL),DSCL{LL), HINIT{M), DPW(M), H(N, M}, (N, M),
& Q(N, M), PN, M), QC(N)
TR FMSHHFM}HREFWIM}ln5H{Nrm1RSH{H1M}FDWrerMHIMJI

& DNP(N, M), RNF(N M), DNH{N, M), RNH{N M), DNQ(N, M), RNQ(N, M),
& U(N, M), V(N,M),RSTP(N M), RETH(N, M), RSTQ{N, M)

oM fﬂfDT,TﬂUC.T‘:'UﬂH.MLDmusgm:}'{}rsﬂm !H}IMHMIMI‘TANS{HPM}
& JDEL, TAND(N M), ALSF(N M),PLOT,TITLE

commoa /f4/BETA,GT(N,M), U0(M), HNPI(N M), TTIME,TT, HCOUNT, TOUSO{M),
d& SSO(M), MUGM), TOUP(N, M)

OPEN(7,FILE="pl{T.DAT' STATUS ="NEW")

OPEN(S,FILE = "plt8. DAT" STATUS="NEW")

OPEN(9,FILE = "plt9. DAT" ,STATUS ="NEW")

OPEN(10,FILE="plt10.DAT",STATUS ="NEW")
OPEN(11,FILE="plt11.DAT",STATUS ="NEW"}
OPEN(12,FILE="pit12. DAT" ,STATUS ='NEW")
OPEN(13,FILE="plt13. DAT" ,STATUS ="NEW")
OPEN(14,FILE="plt14.DAT" STATUS ="NEW")
OPEN(15,FILE="plt15.DAT’ ,STATUS ="NEW")
OPEN(16,FILE="plt16.DAT",STATUS = 'NEW")
OPEN(17,FILE="plt17.DAT',STATUS ="NEW")
OPEN(18,FILE = "plt18.DAT',STATUS ="NEW")
OPEN(19,FILE="pit19.DAT' STATUS = "NEW")
OPEN(20,FILE » "plt20.DAT’ , STATUS = 'NEW")

c

C
WRITE {4,20) T,JCRS
20 FORMAT{'TIME STEP",14,10X,"CROSS-OVER SECT. No.=",I4)
DO 10 J=1,1]
WRITE (4,70) J(P(J,K),K=1,KK),(Q(}.K).K = LKK),
& (CHEL{J,K),K=1,KK},
& Q1OCU),(-HNP1{LK), K =1,KK),
& (85(7,K), K= 1,KK),(SN(J K),K=1,KK)
70 FORMAT ("SECT.",I3,1X,'P (M2/5)' 3E11.4,
& /.9X,'Q (M2/S)",3E11.4,/,8X,"CHE (M.5/5)',3E11.4,
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& ALI0X,E11.4,'=INITIAL Q°,
& 4X,Ell.4,'=CALCULATED OQ °,
& 1,9X."Zn+1 (M), 3E11.4,/,9%, S5(M2/5)",
& 3JIEI11.4./9X,"SN(M2/5)",3E11.4,
& L159(-"0)
10 CONTINUE
C FOR PLOTTING THE CROSS-SECTIONS OF THE RIVER
[F(PLOT .EQ. 1) THEN
Do 71 J=1.10
DO 71 K=1,KK
WRITE(7, T2)K,-HNP1{I.K})
72 FORMAT(4X 12, 1X E11.4)
71 CONTINUE
C FOR PLOTTIMNG THE BED LEVEL PROFILE
ELSEIF(PLOT .EQ). 2) THEN
DO7EK=1KK
WRITE(19,7T)K,-HNPI(I]K)
77 FORMAT{4X,12,1X,E11.4)
T CONTINUE
DO 907 J=1.11
&= {j=1)*dzc/ 1000,
write(7,*)s,-HNP1{j,kk)
write(8, *)s,-HNP1(j, kk-1)
write(9,*)s,-HNP1(j, KK-2)
write(10,*)s,-HNP1(j, KK-3)
write{11,%}s, -HNP1(j,KK-T)
“ﬁtﬂ{!i."}l.vlmp I'{.ii I}

write(13,*)s, U1, KK}
write{ 14, *)s, U(j, KK-1)
write(15,%)s,U(j,KK-2)
write( 16,*)s, U(j, KK-5)
"#Til:ﬁ: 17 r‘hlu{j FKE"?]
write{ 18, *)s. U(j,1)

WRITE(20, %8, UB(T)
907 CONTINUE

c

C FOR PLOTTING THE RELATIVE MAIN FLOW VELOCITY

ELSEIF(PLOT .EQ. 3) THEN

do 908 j=1,jj
g={(j-1)*dsc/1000.
write(7,*)s, U(j, KK}
write(8, "8, U(j, KK-1)
write(9,*)s,U(j. 1)

B0 continue
C FOR STREAMLINE CURVATURE
ELSEIF(PLOT .EQ. 4) THEN
do 909 j= 1,jj
g = (j-1)*dsc/ 1000.

write(7,*)s, RETP(j. kk)
write{8,*)s, RSTP(j kk-1)
write{9,*)s, RSTP(j. 1)
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c FD&;’EDWNG THE TRANSVERSE VELOCITY @ CENTRE LINE

do 910 j=1,jj
s=()-1)*dsc/1000,
write(7, *s,v(j,KK)
write(8, *}s,vij, KK-1)
write(9, %)s,v(j, 1)

910 continue

ENDIF

CLOSE(T)

CLOSE(8)

CLOSE(9)

CLOSE(10)

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

RETURN

END

Holf.... SOUBROUTINE FOR OUTFUT HEADING

SUBROUTINE PRT(WIDTH,KSN,C,ITER)

PARAMETER(N = 100,M=15,LL=10)

common FICHE,SLOPE,RSC,DSC, RN, DN, I KK, EQU,L, THLL), CHEL{N M),

& RSCL(LL),DSCL{LL),HINIT(M), DFW(M}), H{N,M),F(N,M},

& QUN. M), P(N, M), QC(N)

commeon /f3/DT, TOUC, TOUS(N, M), DM, S5(N M), SN{N, M), MU{N M), TANS(N M)
& 'DEL, TAND{N,M), ALSF(N,M),PLOT, TITLE

common Mf4/BETA,GT(N,M), UNM), HNPL(N M), TTIME, TT,HCOUNT, TOUSHM),
& SSO(M), MUGKM), TOUP(N M)

REAL CHE,SI,RSC,RN,DIA,DSC,DN, TTIME, TTM, DT, DD, HINIT, DPW, WIDTH,
&  KSN,C.ERR

DIMEMSION MM(M)

INTEGER JJ,KK,ITER,MM,TP1,TP2,TP3, TP4,TP5, TP6, TP7, TPS,TP9, TP, L
CHARACTER*50 TITLE

WRITE(4,60)TITLE

&0 mlﬂlax o sdpsee s R SRR R ERRR R RS

& /,18X,'* STEADY STATE FLOW COMPUTATION *,

& /,18X,'* Four point scheme .

& ,f.1l}{"-ntﬂul"-r-n---n---u--t-t"tu":---u-"-w.
&  /.5xz,'Transport formula. ....".(A20))

Do 61 I6=1,KK

MM(I6)=16
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61 CONTINUE
DD =DT/ 3600
IF(TTIME .GE. 86400)THEN
TTM =TTIME/86400
WRITE (4,62) CHE,SLOPE,RSC,RN,DSC,DN,JJLKK,L,ITER, DD, TTM,BETA,
& DM WIDTH, KSN,C
62 FORMAT(SX,"INPUT DATA",/,5X, 10{"-"),/,5X,

.3 "Chezy coefficient (Initial) ='17.2.(m**0.5/5)",/, 5z,
& "Initinl bed slope =".El11.4,/.5x,
& "Centre line curvature =" El1.4./ 5%,
&  Curvature in n-direction =", E11.4,/ 5x,
& "Centre line distance step =", 17.2."(meter)’,/ 5x,
& ‘Distance step on the n-axis =" 7.2, "(meter)’,/ 5%,
& "Na. of points in S-direction =",14, (points)’,/,5x,
&  'No. of points in n-direction =",14,"(points)",/,5x,
& ‘Mo, of uming points =" 14, (points)’,/ 5%,
& "No. of iteration =" T4, (umes)", . 5x,
& ‘Time step =" 7.2, (hours)',/,5x,
& "Total simulation time =" FT02, " (days)". /. 5%,
& "Beta coefficient =" 7.2./,5x,
& "Sediment grain size diameter =", E1Ll.4,"(meter)’, [ 35X,
& "Width of the nver =" .20 5x,
& ksn =" 1.2,/ 5%,
& e ,power for steep bank =" 7.2}
ELSE
TTM=TTIME 3600
WRITE (4,63) CHE,SI,RSC,RN,DSC, DN JLEKK, L, ITER, DD, TTM,BETA,
& DM

63 FORMAT(SX, INPUT DATA" /. 5X, 10("-"),/ . 5X,

&  "Chezy coefficient (Initial) =".f7.2,"(m**0.5/5)",/,5x,
& *Initial bed slope =" ElLl.4,/.5x,
& *Centre line curvature =" Ell.4,/,5x,
& "Curvature in o-direction =" El11.4,/.5x,
& ‘Centre line distance step =", 7.2, (meter)’,/, 5x,
& "Distance step on the n-axis  =",17.2,"(meter)"./,5x,
& *No. of points in S-direction =',14,'(points)’,/,5x,
& ‘Mo, of ;:Ininl'.ll in ﬂ.—d.lll'bﬂ.llm . 'pMp.'{F:i'nuJ'lflSIl
& "No. of turning points =" 14, (points)",/,5x,
& *No. of iteration =" 14, (times)',/,5%,
& "Time step =" 7.2, "(hours)’ /5%,
& *Total simulation time =" 7.2, ' (hours)* ./, 5x,
& ‘Beta cosfficient =" 17.2.1.5x,
& *Sediment grain size diameter =",E11.4,"(meter)’)
ENDIF
=
WRITE (4,64) (TP(I).I=1,L)
&4 an-{im,;x,fpmﬁm of the TR(L)"/.5X,'T =",2x,914,/,159("-"))
¢
WRITE (4,65) (CHEL{},I=1,L}

65 FORMAT(/,5X, ' Chezy coeff. for different reaches’,/,5X,9F6.2,
& 11590}

WRITE {4,66) (DSCL{T),I=1,L}
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66 FORMAT(/,5X, "Centre line distance steps’,/,5X,9F8.2,
& 1,159(*-"))

WRITE (4,67T) (RSCL{I},I=1,L)
67 FORMAT{/,5X, Centre line curvatures’,/,5X,9E11.4,/, 159("="))
[+
WERITE(4, 680 MM(T), [ =1 KK)
68 FORMAT(/,5X,'[ K POINTS J'.11X.517)
WRITE (4,69) (HINIT(I), 1= 1,KK)
69 FORMAT (5X,97("-"),/,5X,"INITIAL WATER DEPTH [M]'.3X.5F7.4)
WRITE (4,70) (DPW(IILI = 1,KK)
TO FORMAT (5X,"FLUX AT WEST BOUNDRY [MZ2/5]",2X,5F1.4)
WRITE (4, TI){(MM(I).1=1,KK)
71 FORMAT (/,35X,"TABULATION OF RESULTS ;P & Q OVER THE SECTION °,
& £, 35X, 47(-").4,°[ K POINTS ]°,5111,/,159("-")
RETURN
END
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B.1 Roughness predictor model; Dune size calculation

This program is compatible with simulation model HYDHST. FOR.

PROGRAM ROUGH
PARAMETER (N=100)

REAL*E PHES PHES2, DPHES, Wer, Waus, Wer2 PERC2 dord, dsus2,

& dsus, wsus?, DEL, G, RED, UUfp, Qd, Up, Ufp, wewer, Kd, bp,

& THPFP1, THPP2,MANN, WSWCR2, THE, Re, Nu, ULIf2,h2

REAL*8 PHEB,DPHEB,CHE FF,TETA2, TEP, TETA, TETAC, U, X, UUf, UL HYDR. X1
REAL*8 Q8,THpp,C1,C2,C3, TH2,5LOPE, Q,hd,d50, WIDTH, X2( A

REAL*S w,d,ds, PERC, TH,LH,FTILE,FT2,dcr, PERCR,Qn,DIF, DHh,LDH,h

INTEGER I,J,NP,NP1,NP2 MODEL,ITER, PCODE, K

DIMENSION wiN),d(N),ds(N), PERC{N}, TH(N), LH(N), h(N), Qm{N)

CHARACTER*12 NAME

OPEN(4,FILE="BST.DAT" STATUS="NEW")
OPEN(6,FILE="Tep.DAT",STATUS ="NEW")
OPEN(7,FILE="depth. DAT",STATUS ="NEW")
OPEN(S,FILE = "TEST.INP*,STATUS ="0LD")
1 READ{S,"(5AY ,ERR = 3000, END =3000)NAME
C
OPEN(3,FILE=NAME,STATUS="0LD")

CALL READ{Q,SLOPE,d50, WIDTH, hp,NP, NP1, NP2, MODEL.ITER,PCODE,

& w,d,ds, PERC,TH,LH)
C START
DEL = 1.65
G = 9.81
C1 = DEL*G*d50/1000.
Nu = 1,1E-006
J=2
C CALCULATION WITH PLANE BED
h{l} = hp
DO &0 I=1,ITER
UUfp = (6. +2.5*DLOG({T)/(2.5*d50/1000.)))
Ufp = DSQRT(G*WT)*SLOPE)
Up = UUfp*Utp
Qnu(l) = b{D*WIDTH*Up
DIF = DABS(Q-Qn(I))/Q
WRITE(* *)'DIF" . DIF
HYDR = WIDTH*h({T)/(Z.*h{T) + WIDTH)
RBD = HYDRM(I)
C
C HINTS FOR CONVERGING PROCESS
CFORIF R/b < 0.7 ,Q=fih); IFRM > 0.7 ,Q=Rh**1.5)
c
IF(DIF .GT. .00001 .AND. 1 .LE. 2) THEN
IF(RBD .LE. 0.7) THEN
bl + 1)=h{T}*Q/Qn(l)
ELSE
hil+ 1)=h{Ty*{Q/Qu{I))y**.66667
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ENDIF
ELSEIF(DIF .GT, .00001 .AND. 1 .GT. 2) THEN
XX = (Q-Cm(I))*(Q-Om1-13)
TF(XX .LT. 0.) THEN
(L + 1) ={Q-Cm(1- 111 Qni1-Qn(1- 1" h(T)-h(1-1))
e +h{l-1)
ELSE
C h(l+1)=h{l-2)*0.1 + h{l-1%0.75 + h{[}*0.15
L+ 1 =h(I-11*0.5 + hilj*0.5
ENDIF
IF {1 .EQ. ITER) THEN
WRITE(*,*)'PLEASE IMPROVE YOUR GUESS'
CLOSE(3)
GOTO 1
ENDIF
ELSE
hp=h{l}
GOTO 600
ENDIF
60 CONTINUE
600 TEP = hp*SLOPE/{DEL*d50/1000.)
c
€ ROUGHNESS COEFFICIENTS FOR PLANE BED

C TWO CASES FOR PLANE ; 1 - DEFINED BY PHYSICS & 2 - DEFINED BY USER !

IF(TEP .GE. 2.5) PCODE = 1
IF (PFCODE .EQ. 1) THEN
FF = 2{UUfp*UUp)
CHE = DSQRT(2.%G/FF)
MANN = HYDR*=0. 1666666/CHE
Kd = hp/DEXP((UUfp-6.)/2.5)
hd = hp
TETA = TEF
GOTO 1000
ELSE
C CALCULATION FOR DUNE PHASE (Initial step)
hd = 1.75%hp
UUf = 0.43*UUfp
ENDIF
e
€ CALCULATION FOR DUNE PHASE (WITH EXACT SOLUTION)
DOsS01 = 1.ITER
HYDR = WIDTH*hd/(2.*hd + WIDTH)
WRITE(* *)'HYDR HYDR
WRITE(*,*)'HD 2-ITER".hd
Uf = DSQRT(G*hd*SLOPE)
WRITE(*, *)'UF,Uf

U = ULIM*~U§
WRITE(*,*)'U", U
RBD = HYDR/hd

WRITE(*,*)' RED",RBD
C CALCULATION OF THETA
TETA = hd*SLOPE/(DEL*d50/1000.)
THPPI = (TETA-TEP)TEP
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C
C ROUGHMNESS COEFFICIENTS
FF = 2{UUMUUR
CHE = DSQRT{2.™G/FF)
MANN= HYDR**), |666666/CHE
Kd = hd/DEXP{(UUf-6.)/2.5)
IF(MODEL .NE. 3) GOTO 100
C
C THIS IS5 DUNE DIMENSION CALCULATION, FREDSOE METHOD.
C
[Fipeode .EQ. 2} THEN
CALL BEDLDEDH'ETA.FHEH.I}PHEH}I
Weres Uf
CALL INTEPO( w.d . Wer,der NP)
CALL INTEPO() ds, Perc,der, Percr, NP1)
FTILE = Percri2,
CALL INTEPOKT, Perc,ds, FTILE, dsus, NP1}
IF{) .EQ. ) GOTO 700
CALL INTEPO( d.w,dsus, Weus, NF)
C CALCULATION OF SUSPENDED SEDIMENT DIEGAARD EQUATION!
CALL D]EG{WGr.“’m,hd,dﬁﬂ,TETA.PHES,'-h':i"-l-'l:rj
C
CCALCULATION OF "DPHES"
TETAZ= TETA+0.01
b2 =TETAX*DEL*450/ 1000, /SLOPE
Werl= DSQRT(G*h2*SLOPE)
CALL INTEPO{},w,d,Wer2,der2, NP)
CALL INTEPO(JJ.ds, Perc,dcr, Perc2,NF1)
FT2=Perc2/2.
CALL INTEPO{I, Perc,ds, FT2,dsus2, NP1)
CALL INTEPO, d,w,dsus? Waus2 NP)

CALL DIEG(Wer2, Wsus2 h2 450, TETA2, PHES2, wewerl)
DPHES= (PHES2-PHES)/0.0]
UUfZ2=U/Ufp
CALL DUNE(],PHEBR,DPHEB,PHES, DPHES, TETA, hd,d50, Wer,
& Wus, THpp, DHK, LDH, UU2, TH, LH,NF2)
THPP2? = THPP
GOTO 222
C THIS IS A CASE FOR NO SUSPENDED SEDIMENT LOAD.
€ THIS CASE CAN BE OCCURED WHEN SHIELDS PARAMETER < 0.2
T CONTINUE
DPHES = 0.
PHES = 0.
UUI’Z-Uﬂjfp
CALL DUNE(J,PHEB, DFHEB, PHES, DPHES, TETA, bd,d50, Wier, Wsus, THpp,
& DHh,LDH,UUR, TH,LH.NPF2)
THPPZ = THPP
212 dif = DABS{THPP2-THPP1)
IF (DIF .GT. .0001)THEN
K = ITER-10
IF (I .GE. K) THEN
Y= 0,85*THPP1 + 0.15*THPP2
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ELSE
X= 0.51*THPP1 +0.49*THPF2
EMDIF
WERITE(*,*y X" X
UUf = (0.995194-1.39301*X 4 1.2004*X*X .0, T27I*X* X *X
& + L 2G20T*E*N -x*xau.msms-x*x*x-:-:*x}*ump
hd = (X+1)*hp
ELSE
GOTO 3000
ENDIF
IF (1 .EQ. ITER-1) A=X
IF (1 .EQ. ITER) THEN
X=(A+Xy2.
UL = (0.995194-1.39300%% + 1. 2904+ X 3.0, 72733 =3 +X
& 0.2 1G0T N * N X -0, 07 56065 X XX U U
bd = (X+1)*hp
TETA = hd*SLOPENDEL=A50/1000.)
GOTO 2000
ENDIF
ENDIF
50 CONTINUE
C "CALCULATION OF ROUGHNESS COEFF. FOR ALLUVIAL DUNE COVERED-RED®
2000 Kd = hd/DEXP((UUfE.)/2.5)
Uf = DSQRT(G*hd*SLOPE)
d = WIDTH*hd*UU*LIf
Re = Ufed50/1000. My
IF (Re .LT. 12.) THEN
WRITE*, *)' WARNING!! RIFFLES RATHER THAN DUNES'
ENDIF
iC SEDIMENT TRANSPORT
1000 C3 = DSQRT(C1)*dS50/1000.
CMP &M
IF(MODEL .EQ. 1) THEN
IF(TETA .LT. 0.047) THEN
Q5= 0.1E-08
ELSE
Xl= TETA - 0.047
QS= B.*X1**]_5*CI*WIDTH
ENDIF
ENDIF
C E-H
IF(MODEL .EQ. 2) THEN
TH2= (TEP-0.06)/0.4
IF{TH2 .LT. 0. .OR. PCODE .EQ. 1) THEN
TH2= TEP
ELSE
TH2= DEQRT(THZ)
ENDIF
IF{TH2 .LT. 0.047) THEN
Q5= 0.1E-08
ELZE
Q5= 0.1/FF*TH2**2.5+*C3*WIDTH
ENDIF
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ENDIF
C E-F
[F(MODEL .EQ. 3 .AND. PCODE .EQ. 1) THEN
CALL BEDLOAD(TEP,PHEB,DPHER)
Wer=Ufp

CALL INTEPO(II, w.d, Wer,der, NP)
CALL INTEPO(I],ds, Perc,der, Percr, NP1)
FTILE =Percr/2.
CALL INTEPOY), Perc,ds, FTILE, dsus, NP1)
IF(J .EQ. 0) GOTO 717
CALL INTEPO{JI.d,w,dsus, Wsus, NF)
CALL DIEG(Wer, Wsus, hp,d50, TEP, PHES, wswer)
GOTO BEE
Ti1 FHES=0.
888 IF(TEP .LT. 0.047) THEN
PHEB= 0.1E-10
PHES= 0.1E-10
Q5= 0.1E-08
ELSE
Q5= (PHEB+PHES)*C3*WIDTH
ENDIF
ELSEIF(MODEL .EQ. 3 .AND. PCODE .EQ. 2) THEN
Q5= (PHEB + PHES)*C3*WIDTH
ENDIF
C PRINT OUT RESULTS DATA FILE
CALL OUTTEST{(QS,WIDTH, tep,teta, Qd, hd)
CLOSE(3)
GOTO 1
3000 close(4)
CLOSE(3)
close(6)
chose(T)
STOP
END

C SUBROUTINE FOR READING INPUT DATA

SUBROUTINE READ(Q,SLOPE,d50,WIDTH,b,NP, NP1,NP2,MODEL,ITER, PCODE,
& w,d,ds, PERC,TH,LH)

PARAMETER(N = 100)

REAL*S (), SLOPE,d50, WIDTH, b, w,d,ds, PERC, TH ,LH

REAL A,B,C.E,F,Al,B1,C1,D1,E1,FI

DIMENSION w{N),d(N),ds{N), PERC(N), TH(N),LH(N)

INTEGER NP,NF1,NP2,MODEL,ITER,PCODE

CALL IREC
READ{3,%)A,B,C,E,F
Qma
SLOPE=B
dS0=C
WIDTH = E
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h=F

CALL IREC
READ(,*)NP NP1 .NF2,MODEL,ITER,PCODE

CALL IREC
DO 1 I=1.NP
READN3, *JA1,B1
wil)=Al
d(1)=B1
1 CONTINUE
C
CALL IREC
DO 2 1=1,NP1
READY{3. *)C1,D1
de(l)=C1
PERC(T)=D1
2 CONTINUE
C
CALL IREC
DO 3 1=1,NF2
READ(3,*E1,F1
TH(I)=El
LH{I)=F1
3 CONTINUE
RETURN
END

C SUBROUTIME POR SEIFS COMMENT CARDS [N INFUT DATA

SUBROUTINE IREC
CHARACTER*1 REC
Do iD= 1,99
READ (3,20) REC
1F (REC .NE. 'C") GOTO 30
10 COMTINUE
20 FORMAT(A1)
30 RETURN
END

e
€ SUBROUTINE FOR OUTPUT

SUBROUTINE OUT(Q,Qd.h,d50,5LOPE, WIDTH,CHE,PHEB, PHES, MANN, FF,0Q8,
& wywer, MODEL, PCODE, TETA, TEP, U, Uf,UUf,DHh,LDH, Kd,
& hp, ULTEp, Up, Ufp, Re, TH2)

REAL*8 Q,0Qd h,d50,5LOPE, WIDTH,CHE,PHEB,PHES .FF,Q3,TEP.DHh,Re,
& U, UL, UUf, TETA, THPP, wswer, hp, UUfp, Up, Ufp, LDH MANN, Kd, TH2
CHARACTER*10 FORM, REGM

INTEGER MODEL,PCODE

IF(MODEL .EQ. 1) FORM = 'MP&M®

IF(MODEL .EQ. 2) FORM = 'E&H’
IF(MODEL .EQ. 3) FORM = "JF
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C
WRITE(4, 100)
100 FORMAT(10X,38("-"))
WRITE(4,10)
10 FORMAT(10X,'PLANE BED FLOW FIELD & TETA-P")
WRITE(4,100)
WRITE(4,11)Q.bp, Ullfp, Up, Ufp, TEP
11 FORMAT(/,9X, 'DISCHARGE',2X,"DEPTH PB",6X,"UrUl, 10X."U", 10X, "UF,
& BX,"TEP"./,6X,6(E11.4),)
C
IF(PCODE .EQ. 1) REGM = 'PLANE BED"
IF(PCODE .NE. 1) THEN
REGM = 'DUNE PHASE'
TETAFP=TETA-TEP
ENDIF

WRITE(4, 100)
WRITE(4,12)REGM ,Re
12 FORMAT{10X,"HYDRAULIC CONDITION &, 5X,(A100,/,15X,
& "Reynolds Mo, =" E11.4)
IF (Re .LT. 12) THEN
WRITE(4,2)
9 FORMAT(10X," WARNING! Ripples rather than Dunes')
ENDIF
WRITE(4, 100)
WRITE(4,13)0d, b, d50,53LOPE WIDTH
13 FORMAT(/, 10X, DISCHARGE',5X,"DEFTH’ ,5X, 'GRAIN SIZE",5X,"SLOPE",
.3 3X,"WIDTH"./,9X,2(F10.3),2X,F10.3,3X F10.7,1X,F10.2, /)

WRITE(4, 100)

IF(PCODE .EQ. 1) THEN
WRITE(4,14)
14 FORMAT(10X,"RESULT FILE FOR ROUGHNESS COEFFICIENTS (PLANE BED)")
WRITE(4, 100}
ELSE
WRITE(4,15)
15 FORMAT(10X,"RESULT FILE FOR ROUGHNESS COEFFICIENTS (JF METHID)')
WRITE(4, 100)
ENDIF
WRITE(4, 16)CHE, FF MANN,Kd, TEP, TETAPP, TETA
16 FORMAT{/,6X,"CHE COEFF.",3X,'C & W', 2X,"MANNING",2X,
&  'Kd-PARAMETER'.2ZX,"TETA-P',2X, TETA-PP'.2X, ' TOTAL TETA",
&  1.6X,F7.3,6X,F5.4,2X F5.4,5X . F6.4,7X,F6.4,2X,F6.4,4X,F6.4)
IF{MODEL .EQ. 3) THEN
WRITE(4,1T)FORM,PHEB,PHES. Q5
17 FORMAT(/,6X,"FORMULA' 4X,"BED LOAD" 4X, "'SUSPENDED",3X,
& "TOTAL SED. TRANSPORT'./.17X,'DM-LESS' 5X,
&  DM-LESS' 11X,"M**¥SEC'.[6X.(AT),2X.E11.4,1X.E11.4,6X,
& EIL4N
ELSEIF{MODEL .EQ. 2) THEN
WRITE(4, 1E)FORM,Q8, TH2
18 FORMAT(/,6X, FORMULA", 3X,'TOTAL SED. TRANSPORT (M**3/SEC)",
&  3X,TOTAL THETA'./,6X.(AT),5X.E11.4,24X,F6.4,/)
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ELSE
WRITE(4, 19/ FORM,Q5,TETA
19 FORMAT({/,6X,"FORMULA' 3X,"TOTAL SED, TRANSPORT (M**3/5EC)",
& IX.TOTAL TH ET#',ﬂﬁx,{AT},SR,EI 1.4,24X Fa.4,0)
ENDIF
IF(PCODE .EQ. 2) THEN
WRITE(4,20)
20 FORMAT(10X,"'A FLOW FIELD FOR A CERTAIN CONDITION")
WERITE(4, 1009
IF(MODEL .EQ. 3) THEN
WERITE(4, 217U U, U wawer
21 FORMAT(/,9X," U 7 UF 6X,"MEAN VELOCITY'.3X,

& 'FRIC. VELOCITY ", 3%, "Wsus / U /.6X,
& F10.3,2X,F10.3,6X,F10.3.6X,F10.3)
WERITE(4,22)DHh, LDH
22 FORMAT{/ 8X,"DUNE HEIGHT / WATER DEPTH',2X,
& 'DUNE SIZE (L/HY",/,14X,E11.4,9%,F9.4,/)
WRITE(4, 100)
ELSE

WRITE(4,23)UUf, U UF
13 FORMAT(/,9X." U / U ,6X,"MEAN YELOCITY" ,3X,
& 'FRIC. VELOCITY"./.6X.F10.3,2X,F10.3,6X,F10.3)
WRITE(4,100)
ENDIF
ENDIF
RETURN
END

C SUBROUTINE FOR CALCULATHON OF BEDLOAD BY FREDEEE METHOD

SUBROUTINE BEDLOAD(TETA,PHEB,DPHER)
REAL*R TETA,TETA2, TETAC,BETA,PLA
REAL*E PHER,PHEB2,DPHER,PFAC,CC
C
€ CALCULATION OF P VALUE
c
Pl=3.1415926854
TETAC=0.047
BETA=0.65
IF{TETA .LT. TETAC) THEN
PHEB = 0.
DFHEB = 0,
GOTO 10
ENDIF
c
C PHE-B
CC=Pl/6.*BETA/TETA-TETAC)
PFAC=1./{1. +CC**4 )*+0.25
A={DSQRT(TETA)-0.7*DSQRT(TETAC))
PHEB = S.*PFAC*A
C DPHE-B
TETAZ=TETA+0.01
CC=PL'6. *BETANTETAZ-TETAC)
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PFAC= 1/(1. + CC**4,)**0.25
A=(DSQRT(TETA2)-0.7*DSQRT(TETAC))
PHEBZ = 5.*PFAC*A
DPHEB = (PHEB2-PHEB/0.01
10 RETURN
END

C SUBRGUTINE POR DUNE DIMENSIONS

SUBROUTINE DUNE(J PHEE, DPHEB, PHES, DPHES, TETA b, 450, Wer, Wisus,
& THpp,DHh, LDH,UULTH,LH.NPY)
PARAMETER (M= 11{)
REAL*8 FHES,DPHES, Wer, Weus, 450, HYDR,LDHI1,LDH2
REAL*8 DHh,PHEB,TETA,DFHEE,C1,C11,C2,Ubf b
REAL*E RHS,DELTh,DelDH,LDH, ULUY, THpp, TH,LH
INTEGER J,NFP2
DIMENSION TH(N),LH(N)
C CALCULATION
50w S0V 1000,
DHh = PHEB/(2*TETA*DPHEB + DPHES))
IF(J .EQ. 0) THEN
J =2
DelDH = 0.
goto 100
ELSE
C2 = WerWsus
ENDIF
Cl = hi(13%2.5%450)
Ubf = £.342.5*DLOG(CI)
DELTh = CZ*CX13.*Ubf
DelDH = DELTWDHAR
C FOR SMALL VALUES OF TETAP(THM)
C ***CHECK FOR THE GREATER VALUE OF LDH IN THE CRITICAL REGION =+
100 IF(TETA .LE. 0.2 .AND. TETA .GE. 0.04T)THEN
CALL INTEPO{JJ.TH,LH,TETA,LDH,NP2)
LDH1=LDH
C CHECK POINT ; LHD FROM EQUATION
LDH2 = (16.*PHEB+(16. + DelDH)*PHES)/(FPHEB + PHES)
WRITE(*,*)'LDH2",LDH2
IF(LDH! .GE. LDH2) THEN
LDH = LDHI1
ELSE
LDH = LDH2
ENDIF
ELSE
LDH = (16.*PHEB+(16. + DelDH)*PHES)/(PHEE + PHES)
ENDIF
THpp = 0.5*UUMUUMDHL/LDH
450 = dS0*1000.
RETURN
END
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C SUBROUTINE FOR SUSPENDENT SEDIMENT CONCENTRATION PROFILE

SUBROUTINE DIEG{Wer, Waus b, 450, TET A, PHES, wewor)
PARAMETER {N =100}
REAL*8 Pfac, Wer, Wrsus, PHES, wswer
EEAL*E PILBETA,C1,DELTAL,Ch,z, ZETA, DELT, Al A2, 21
REAL*8 C0,C01,C2,C3,C4,05,CC,A
REAL*S TETA,TETAC b, 450
C Calculstion
Pl= 3.141592654
TETAC=0.047
BETA=0.65
dS0=d50/ 1000.
CC=PL/6. *BETANTETA-TETAC)
Plae= 1./{1. 4+ CC**4 ++).25
C*Ch
CCl=ALUB
Cl= (TETA-TETAC-PL/6. *BETA*Plac)/ .02 7T TETA2.G5
IF(C1.LE.0) THEN
PHES= O
GOTO 1000
EMDIF
DELTAb= DSQRT({CI)
Ch= 0.65/1. +1./DELTAR)**3,
C*Uf, . ZETA AND DELT
wrwer=WiusWer
r= 2, 5" WeueWer
ZETA= 13, *Wauz"Wer
DELT= 0.19%2%
Al= 2.»d50/h
A= DELT/d5002,
El= 1.-g
C Caleulation
Cl=8.5*Al/z1 " A2**z1-1.)+2.5%A1/z1*(AZ2**z] {(DLOG({AZ)-1./z1)+ 1./21)
Cl= -0.B08*ZETA
Cll= AJ%*r
C2= {5.7+2.5*DLOG(AZ)MC01*{1-DEXP{CO))/ZETA
C3=16.1/001%((1. + ZETA). 192/ ZETA/ZETA-DEXP(COY%ZETA + 1./ ZETA%*2)
Cd= B.05/CO1%(0.192%0. 192/ZETA+2%(1. + ZETA*0. 192V ZETA/ZETA
& -DEXP(CO)*(3./ZETA +2./ZETA/ZETA) )
Qs= Wer*Ch*h*(C1 + C2+C3-C4)
Chm ). 65%9, 8] *d504*3,
PHES = Qs/DSQRT(CO)
1000 CONTINUE
C NOT TO MIX THE DIMENSION
d50 = d50*1000.
RETURN
END
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C SUBROUTINE O_CURVE finds the grain-cerves from e LOG-MORMAL dlatribastion,
C when D, Dy and Dy, wre specified.

SUBROUTINE GCURVE(DS0,D85D15, Wer, Wausp)
REAL®*8 DESDI1S,d50, WFALL{Z),B(5),C(3), N3}, Wer, Wsusp
REAL*E PI,ALFA BETA dcr, Dgrain, X, X1,T,C1,PROC2, PROCENT, PROC22
REAL®E C2,X2,ds
C CONSTANTS
WFALL{1)= 0.143077
WFALL{2)= -0.00915762
B(1)= 0.31938153
B(2)= 40.356563782
B{})= 1.781477937
Bid)= -1.821255978
B(S)= 1.330274429
C{1)= 2.515517
C(2)= 0.802853
C(3)= 0.010328
D{1)= 1.432788
D(2)= 0.189269
D(3)= 0.001308
C CALCULATION
Pl= 4.D+00*ATAN(1.)
ALFA= DLOG(d5M
BETA= 1./DESDI13
C T is help variahel
der= (Wer-WEALL{2Z)VWFALL(1}
Dgrain=dcr/1000.
X= (DLOG(Dgrain)-ALFA)VBETA
IF(X.LT.0) THEN
X1= DABS(X)
T= 141 +0.2316419*X1}
Cl= 0.5*X1**2.
PROCZ= L./SQRT(2.VDSQRT(PI)*DEXP(C1)*
& (B(1Y*T +B(2)*T*T+B{3)*T**3 + B(4)*T**4 4 B(5)*T**5)
ELSE
T= 1AL +0.2316419%X)
Cl= -0.5%)**2.
PROCENT= 1./SQRT(2.VDSQRT{PI)*DEXP(CI)*
& (BLL*T +B(2)*T*T+B(3*T**3+ B(4)*T**4 + B(5)*T**5)
PROCZ= 1.-PROCENT
ENDIF
PROCI2Z= PROC2/2.
IF(PROC22.LE.0.5) THEN
Cl= 1./FPROCIZ**Z.
C2= DLOG(C1)
T= DSQRT(CI)
X2w (C(1)+C(2)*T+CE"T*TI(1. + D{LT + D{Z)*T*T + D(3)*T**3). T
ELSE
Cl= 1./{1.-PROCIZ)**Z.
2= DLOG(CI)
T= DSQRT(CZ)
X2e T - (C(1)+C*T +CRI*T*TI(L. +D{L)*T + D(2)*T*T + D(3)*T++3)
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EMDIF

Cl= XI*BETA+ALFA

ds= DEXP({CI)

Weusp= WFALL(1)*ds*1000. + WFALL(2)
RETUEN

END

C SUBROUTINE POR INTERPOLATION OF THE FUNCTION

SUBROUTINE INTEPO(,X,FX,X1,F1,IMAX)
PARAMETER(N = 100)

INTEGER 1,J,IMAX

REAL®S X, FX,X1,F1

DIMENSION X(N),FX(N)

IF(X1 .LT. X{1))THEN
J=0
Fl= FX(1}
GOTO 70
ELSEIF(X1 .GT. X{(IMAX)YTHEN
J=1
Fi = PX{IMAX)
GOTO 70
ELSE
DO 60 Te= 1 IMAX
IF(X1 .GE. X(T) .AND. X1 .LT. X{I+1))THEN
Fle(FX({1+ D-FXIOI + D-XO)*K1-X0) + FX(T)
GOTO 70
ENDIF
60 CONTINUE
ENDIF
T0 CONTINUE
BETURN
ENDx

C SUBROUTINE FOR DATA

SUBROUTINE OUTTEST(QS, W2,tep,teta,Qd, hd)
REAL*S Qs, W2, tep,teta, Qd, hd
U |
WRITE(4, 10)W2,Q5
10 FORMAT(Z(E11.4))
[ ]
WRITE(S,11)tep, teta
11 FORMAT{2(E11.4))
c3
WRITE(7,12)Qd, hd
12 FORMAT(2(E11.4))
c4
RETURN
END
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B.Z  Input data example for the dune size and roughness predictor model

C INPUT DATA FILE FOR ROUGH.FOR PROGRAM

c
Eﬂyﬂ_ﬂﬂm dS0(mm) WIDTH{m) h{m) First Guess
ciﬂ:ﬂ. LO00009E9 4T 2;_ BS.
E NF NP1 NP2 MODEL ITER FCODE

34100 8 3 2 2
C

C RELATIONSHIP BETWEEN SIEVE-GRAIN DIAMETER AND FALL VELOCITY
C
L w (mfs) (20 deg.C) d{mm) grain-diameter

00RO {0850
0130 L1291
0180 719
0230 2134
JO2B0 230
0330 Bl 7.
J3ED 3304
430 3670
0480 A027
L0530 A31S
0580 4717
D630 S054
DEE0 5350
0730 S125
LOTAD 6054
LOE30 LA410
L0880 6766
L0930 136
g0 e r il
L1030 T936
1080 8374
1130 BE44
L1180 9352
1230 LS02
L1280 1.0502
1330 1.1157
L1380 1.1873
L1430 1.2657
L1480 1.3517
.1530 1.4459
1580 1.5491
1630 1.6621
168D 1. 7857
1730 1.9208
C
C
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- -

C GRAIM SIZE DISTRIBUTION CURVE

c e

L defmm) % fner
L 100 L8538
A 100 G186
L1200 A555
1300 8RR
L1400 SHoEd
LIS00 B192
JLG00 1. 1566
LLT00 16076
- HBDO 217046
L1900 2.8434
o000 36235
2100 4.5080
L2200 5.4934
2300 6.5763
2400 7.7525
L2500 D.0179
2600 10.3680
L2700 11.7980
L2800 13.3032
L2900 14,8783
300 16.5183
3100 18.2179
3200 19.9717
3300 21.7744
3400 23,6204
3300 25.5043
L3600 27.4208
AT00 29, 5644
LABR0O 31.3298
L3900 33,3117
OO0 35.3045
A100 37.3044
200 39,3052
4300 41,3025
4400 43,2917
A500 45,2683
GO0 47.2281
AT00 49. 1668
AB0O 51.0806
4000 52,9659
L5000 54 B1940
5100 566360
5200 58.4165
5300 6. 1551
5400 61,8501

5500 63.4992
3600 65,1006
AT00 &6.6523
S800 68.1530
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S900

6100
00
300

LB300

G700
L6800

100

5700
9800

1.0000
1.0100
1.0200
1.0300
10400
1.0500
1.0600
1.0700
1.0800
1.0900

69.6014
T0.9965
72.3376
T3.6243
T4. 8564
T76.0338
T 15659
TB.2263
79.2426
80.2068
81.1202
B1.9841
228001
83.5700
84,2957
24,9794
B5.6232
86.2296
86.8011
£7.3401
B87.8494
£8.3310
£8.7896
£§9.2261
E9.6438
©0.0455
90.4339
20.8117
91.1812
91.5450
91.9052
92.2639
92,6230
92.9841
93.3485
93.7172
94.0910
94,4703
94,8549
05.2443
95.6377
96,0334
B6.4256
96.8234
97.2118
97.5908
97.9558
98.3014
986214
08.9088
99.1558
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c e

C FOR SMALL VALUE OF SHEAR (TETAP) DUNE STEEPNESS SHOULD BE
C CALCULATED DIFFERENTLY FROM THE BIG-SHEAR-VALUES
C

L TH shear LH dune steepness

047 50,
06 42,
07 36
08 32,
o 2B,
A2 26,
A4 24,
.20 13,



C.1 River Plan-form Movement Model

C.1-1 MAIN PROGRAM

SRR EERFENAGFERER A FESHF S FEB I F R R d b a R

* River Plan-Form Movement Model .

e .
- L L

DECLARATION OF VARIABLES

OO aan

PARAMETER (G=9.81 N=060M=15)
REAL QI.DN,BRSC DEC, CHE EPS, RHS MU, DM DT, TOUC,DEL, BETA, TTIME,
&  TOUPHOWIDTH,KSM,C,R505,D0,EP51, DIFF,DH
INTEGER L1 KK MMM}, VCOUNT,ITER, tp1,tp2,.T.TT HCOUNT,PLOT,
& PTIME,OUT,CODE, EKC,CORR, 5TART, STOP
CHARACTER*50 TITLE
common ff{CHE,RSC.RN,DSC,DN,JIL KK, ITER,tpl,tp2, CHE1,RSCI,RN1,
& DECI1,DN1,CHE2, RECZ RNI,DSC2, DNZ,
& HINTT(M ), DPW(M), H(N, M), F(N, M), Q(N, M),P(N ,M),QC(N)
CEHmEmCHn FEMSHN.M}.RSFW-M}.DEHW.HLRSH{N-HLDEQ'[N-H]-RSQ’(HJ'{}:

& DNP(N, M), RNP(N, M), DNH(N, M), RNH(N, M), DNQN, M), RNQ(N, M),
& U(N, M), V(N, M), RSTP(N, M), RSTH(N, M), RSTQ(N, M)

common /DT, TOUC, TOUS(N, M), DM, SS(N, M), SN(N, M), MU(N, M), TANS(N, M)
& SDEL TAND{M, M), ALSF{N M), PLOT, TITLE

OO mmETA.ﬂ[H.hﬂ.Uﬂﬂd}l,HHPl{N.M}.TITHE,TTJ'ICGUHT.TGUEIII-]}.
& SS0(M), MUG(M), TOUP(N, M)
DIMENSION RSQS(N),DQ(M). TEST(N), DIFF(N), EPS 1{N)

C OPEN DATA INPUT

C
CALL READZ{OUT,CODE,HO,WIDTH,KSN,C,5TART)

C MAKE HEADING
OPEN(4,FILE="hyd.oul’,STATUS = ‘new")
CALL PRTIWIDTH,KSN,C)

C

¢ CALCULATION OF GRID SIZES AND CURVATURE
CALL GRID(RSQS.DQ)

c

C CALCULATION OF THE NO. OF TIME STEPS
TT=TTIMEDT
C
¢ INITIAL STREAM LINE CURVATURE
Do 1J=10
DOl K=1,KK
RSTH(J,K)=R5H(ILK)
RSTP(J,K)=RSP(].K)
RSTQ(I,K)=RSQ(1.K)
1 CONTINUE
C
C START CALCULATION
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PTIME = 0
YCOUNT = O
DO 500 T=5TART.TT
CORR =0
IE(T .GT. START) VCOUNT =1
C INITIAL DISCHARGE CALCULATION AND UWEST BDY)
QI = 0.0
DO2 E=1KK
DPW(K)= 2*P(1,K)-P(2.K)
QI = QI +DPW(K)*DNP{1,K)
UME) = DPW{KVWHI(1 K}
& CONTINUE
99 DO 3G I=1.1)
IF{J .EQ. 1) THEN
CALL WEBDY(G,),QI.VCOUNT,DQ,WIDTH,KSN,C.R5Q8,T.5TART)
ELSE
CALL SECTNG,J, QL VCOUNT, DO, WIDTH, KSN,C RSQS, T.START)
ENDIF
300 CONTINUE
IF{CORR .EQ. 1) THEN
CORR=CORR+1
CALL QQ
GOTO 99
ENDIF
IF({CORR .EQ. 2) GOTO 700
IF(VCOUNT .EQ. 1) GOTQ 350
e
C CALCULATION OF TRANVERSE VELOCITIES
CALL QQ
IFVCOUNT .EQ. HTHEN
VCOUNT=VCOUNT +1
GOTO 99
EMDIF
C CORRECTION FOR STREAM LINE CURVATURE
iC
350 KEKC=EKKnR
360 DO 400 =101
IF(KK .EQ. 2*KKC)THEN
TEST(I)=RSTQ{I.KKC)
ELSE
TEST())=RSTH{1,LKKC+1)
ENDIF
400 CONTINUE
CALL STEM
DO 401 I=1.11
IF{KK .EQ. 2*KKC)THEN
EPSI())= ABS(TEST())-RSTQ(I.KKC))
DIFF()= .01*ABS(TEST(I})
ELSE
EPS1(})= ABS(TEST{))-RSTH{JLKKC +1})
DIFF(J)= .01*ABS(TEST())
ENDIF
IF(EPS1()) .GT. DIFF{I)} GOTO 360
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401 CONTINUE
CORR=CORR + |
GOTO 99
C CALCULATION OF BED TOPOGRAPHY
700 CALL BEDNG,CODE, T, STOP,START)
IF(STOP .EQ. 1) GOTO 80O
IF(T .EQ. START) CALL LST(T,QLHO, WIDTH)
C
C TABULATION OF RESULT
PTIME = PTIME +1
IF(FTIME .EQ. OUT)THEN
CALL LST(T.Q1,. HO,WIDTH)
CALL INTER(T)
PTIME = O
ENDIF
C Imitaalization to pew time step
DO 3IK=1LKK
DO 3 I=1]17
Hi{l.K)= HNPI{].K}
3 CONTINUE
500 CONTINUE
800 CALL LST(T,QI,HO,WIDTH)
CALL INTER(T)
CLOSE(4)
STOP
END

C.1-2 GRID GENERATION PROGRAM

PROGRAM GEN
PARAMETER(N =205, M=15,LL=9)
common /f/CHE,SLOPE,RSCO,DSCO,RN,DN, 1, KK, EQU,L, TP(LL), CHEL(LL),
& RSCL(LL),DSCL{LL), HINIT{M), DEW(M), H(N, M), F(N,M),
& QN M), PN, M), QC(N), RECN), DEC(N)
common /f2/DEP(N, M), RSP(N M), DSH{N M), RSH(N M), DSQ(N, M), RSQ(N M),
& DNP{N, M), RNP(N M}, DNH{N,M),RNH(N M}, DNQ{N M}, RNQ{N M),
& UN, M}, V(N,M),RSTP{N,M),RSTH(N M), RSTQ(N , M)
REAL CL,RN,DN,CHE,RSC,DSC,CHEL, RSC1,DSC1,CHE2, RSC2,DSC2, CHEI, R5C3,
& DSC3,CHE4, RSC4, DSCY, CHES, RSC5, DSCS CHES, R5Cs DECE . CHET RSCT,
&  DSC7,CHEE,RSCS,D5CH,CHES, RSC,DSCY, TTIME, RATE
INTEGER J,K,JJ,KK, TP1,TP2,TP3,TP4,TP5, TP6, TP7, TP, TP9, TP, L
DIMENSION DSQS(N),RSQS(N), DQ(M),D(M), DB{N)

OPEN(3,FILE = 'GRID.IN",STATUS="0LD")
OPEN(9,FILE="GRID.OUT" STATUS = "NEW")

CALL IREC

READ(3,*) DSCO,RSCO,RN, DN, JJ,KK,CHE, TTIME, RATE
CALL IREC

READ(3,% L,(TP(T},1=1,LL)

CALL IREC

READ{3,% (CHEL(I),1=1,L)
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CALL IREC

READ(3,*) (DSCL{I),1=1,L})

CALL IREC

READ(3,*) (RSCL{D.1=1,L)
C INITIAL MAPPING

CALL GRID{RSQS,DQ)

C DISTANT OF BANK EROSION
CALL BANK(DB, TTIME,RATE JI)

C NEW CENTRE LIME POSITION
CALL CLF(DE)

C NEW GRID MAPPING
CALL GRID(RSQS,DQ)

C QUTPUT LISTING
CALL WRITZD(RSQ ,N.M,'RSONEW
CALL WRIT2ZD{(RSP ,MN.M,"RSPNEW
CALL WRIT2D{RSH ,N,M,'RSHNEW
CLOSE()
STOP
END

"8 JLEK)
*9,11,KK)
"1 KK)

SUBROUTINE WRITID{A]IRAYJDIM.KDIM.TEKT.F:EUTJACT.KACT}

DIMENSION ARRAY(JDIM, KDIM)
INTEGER FOUT

CHARACTER*S TEXT
WRITE(FOUT,*) "TYPE ', TEXT
DO 100 J=1,JACT

WRITE(FOUT, 1) J,(ARRAY(],K),K=1 KACT)

1 FORMAT(IH ,I3,100E%.3)
100 CONTINUE

RETURN

END

C SUBROUTINE FOR BANK LINE DISPLACEMENT (DB(I))
SUBROUTINE BANK(DB,TTIME,RATE,JT)

PARAMETER(N =203)
REAL TTIME.RATE,5
INTEGER 1]

DIMENSION DB{N),UB(N)

OPEN{3,FILE="plt19.DAT",STATUS="0LD")
OPEN(4,FILE="DB.DAT" STATUS ="NEW")

DO 10 J=1,J]
READ{3,*)s, UB(G)
DE() = UB(J)*RATE*TTIME
WRITE(4,*)s, DE(j)

10 CONTINUE

CLOSE(3)

CLOSE(4)

RETURN

END

C

C SUBROUTINE FOR NEW CENTRE LINE POSITION
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SUBROUTINE CLPDE)

PARAMETER(N =205 M=15 LL=9)

common /f/CHE, SLOPE,RSC0,DSCO,RN,DN,JJ, KK, ERR, L, TP(LL),CHEL(LL),
& RSCL(LL), DSCL(LL), HINIT(M), DPW(M), H(N,M).F(N, M),
& QN M), P(N, M), QC(N), RSC(N), DSC(N)

common /F2/DSPN, M), RSP(N, M), DSH(N, M), RSH(N, M), DSQ(N, M), RSQ(N. M),
& DNP{N, M), RNP(N, M), DNH(N, M), RNH(N, M), DNGQ(N, M), RNQ(N. M),
& UM, M), V(N M), RETP{N, M), RSTH(N. M}, RSTQ(N, M)

DIMENSION CSP(N),CNP(N),CSPN(N),CNFN(N), RSCN(N), DSCN(N), DB(N)

CSP{1)=0.0
CNP{1}=0.0
DO 11 J=211
CNP{=0.0
CESP()=CSP(J-1) + D5SC(-1)
11 CONTINUE
C AFTER BANK EROSION
CSPN{1}=0.0
DO 20 =111
[F{J .LT. 1I) THEN
DE()=(DB{)+DB{J + 13)/2
ELSE
DB(I)= DE(I-1)
ENDIF
C THIS PART IS USED IF AN APPROACH CHANNEL EXISTS IN THE SIMULATION
IF(RSC{) .EQ. 0) THEN
RSCN(T)=R3C(T)
ELSE
 THIS 15 FOR THE FOLLOWING BEND TRAIN
[F(RSC(N .GT. 0 .AND. DB{J) .GT. 0) THEN
RECN(I)=1/{1/RSC(N + DB}
ELSEIF(RSC(T) .LT. 0 .AND. DBE(J) .LT. 0) THEN
RSCN(N= 1/{1/RSC(J) + DB}
ELSE
RSCN{T = 1/(1/RSC(N)-DB)
ENDIF
ENDIF
IF(RSCN(I) .EQ. 0YTHEN
DSCN(T)=DSC(T)
ELSE
DSCN(J)=DSC(N*RSCIVRSCN(T)
ENDIF
CSPN(T+1)= CSPN(J)+ DSCN(J)
CNPN(I)= CNP(I) + DB(I)
20 CONTINUE

OPEN(T,FILE="GEN.OUT",STATUS = "NEW")
OPEN(E, FILE="NEWDSC.OUT" STATUS ="NEW")
WRITE(7,*)'DSCN" (DSCN(J),J= 111}
WRITE(?, *)' RSCN"(RSCN(T).J = 1,11
WRITE(7,*)'CSPN"(CSPN{I),J = 1,11)

WRITE(7,*) CNPN", (CNPN(J),J = 1.1])
WRITE(7,*)'CSP",(CSP(T).J=1,1])
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WRITE(7,*)'CNP" (CNP(J),0 = 1,11}
DO 30 I=1.7]
RSC(T)=RSCN(D)
DSCN=DSCN(I)
30 CONTINUE
WRITE(S,*)'DSC" (DSC(1).] = 1,11
WRITE(R,*)"RSC" ,(RSC(T),])=1,1])
CLOSE(T)
CLOSE(8)
RETURN
ENDC

C SUBROUTINE FOR NEWGRID SIZE AND NEWCURVATURE CALCULATION
SUBROUTINE GRID(DSQS.DQ)
PARAMETER(N =205 M= 15 LL=9)
common /f/CHE,SLOPE RSCO0,DSCO,RN, DN, I, KK, EQU,L, TR(LL),CHEL{LL),
& RSCL(LL),DSCL(LL), HINIT(M), DPW(M), H(N, M), F(N, M),
& QN M), P(N,M),QC{N),RSC(N),DSC(N)
common /f2IDSP(N M), RSP(N, M), DSH(N,M),RSH(N, M), DSQ(N, M).RSQ(N M),
& DN, M), ENP{N ML DNH(N M), RNH(N M), DNOQMN, M), RNC{N, M},
& LA, M, VN ML RETRN ML RETH{N, ML RSTOUN, M)
REAL CL REN,DN,CHE,RSC,DSC,CHE],RSCI,DSC1,CHE2, R5C2,DSC2, CHE3, RSC3,
&  DSC3,CHE4 RSCY4 DEC4 CHES RECS, DSCS, CHES RECSE DRCS CHET RECT,
& DSCT7,CHEE, RSCE,DSCS,CHES RSC9, D5CS
INTEGER I,K,JI,LKK, TP1,TP2, TP3,TP4,TPS, TP6,TP7, TP3, TP, TP, L
DIMENSION DSQS(N),RSQS(N), DQIM).D(M)
e
C CALCULATIONM OF GRID CENTRE LINE
CL = (KK+1.)%0.5
C FOR N,DIRECTION GRID AND CURVATURE
DO 100 I=1.13
DO 100 K=1KK
dnp(j,k)=dn
mp(j k)=m
dnh{j.k)=dn
ki) k)= m
dnglj.k)=dn
mq(j.k)=m
100 CONTINUE
C FOR 5,DIRECTION GRID AND CURVATURE
TF1 = TP(l1)
IF(TP1 .GT. }) TP1=11+1
DO | J=1,TP1-1
dsqe(j)=dsc(J)*(1 +(0.5-cly*dn*rsc(]})
rsqs{j) = rsc(J)/(1 + (0. 5-cly*dn*rsc(]])
DOl Ks1,EK
dik)=(k-cl)*dn
dap(j, k) =dsc(Ty*(1 +d{k)*rsc{]))
rep(j, k)= rsc(1)/(1 +dk)*rse{I))
dshifj. k) =dsp(j k)
rehj, k)= rsp().k)
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dg{k)=(k+0.5<l)*dn
disg(j k) =dsc{J)*(1 +dqiky*rsc(j))
rgij, k) =rse{J 11 + dglk)*rsc(D))
1 CONTINUE
c
¢ after turning point 1
c
IF{tpl .GT. §j) goto 1111
CHE=CHEL{1)
c DSC=D3CL{1)
c RSC=RSCL{1}
TP1=TP(2)
IF(tp2 .gt. jj) TP2=JI+1
DO 2 J=TP1,TP2-1
dsqs(j) = dsc{)*(1+ (0.5-¢l)*dn*rsc(J))
regs(j)=rse(I /(1 +(0.5-cl)*dn*rec{T))
DO 2 k=1,KK
dspd(j. k) = dsc(T)*(1 +d(k)*rsc(l)}
rep(j b} = rsc(F)/(1 + dik)*rac ()
deh(j, k) =dspdj, k)
rehifj k) = rap{j.k)
deqij k) =dsc(T1*(1 +dq(k)*rsc(T))
e, ke) = rsc(I)/(1 + dglk)*rsc(l))
2 CONTINUE
C
afier tuming point 2
c
IF(TP2 .GT. 1J) goto 1111
CHE=CHEL{2)
C DSC=DSCLY)
c RSC=RSCL{Z)
TP3I=TP(3)
IF{TF3 .GT. II} TP3=1l+1
DO 3 J=TP2,TP3-1
daqelj)=dscI)*(1 + (0. 5-cl)*dn*rsc{]})
rags())=rse{IW{ | +(0.5-cl)*dn*rzc(]})
DO 3k=1,KK
dsp(j, k) =dse(J)*(1 +d{k)*rsc(})
repl k)= rse(T) (1 +dik)*esc(l])
dshij k) = dsp(i.k)
rshij, k) = rp(], k)
deg(j, k) =dsc(J)*(1+dq(k)*rsc(]))
raqy(j, k) = rsc(J)/(1 + dglk) *rsc(1})
3 CONTINUE
=
¢ after turning point 3
c
IF(TP3 .GT. 1)) GOTO 1111
CHE=CHEL{3)
C DSC=DSCL(3)
C RSC=RSCL{3)
TP4=TP(4)
IF(TP4 .GT. JJ) TP4=11+1

";" *n? § F
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DO 4 I=TP3,TP4-1
dags(j)=dsc(Ty*(1 + (0.5 -<ly*dn*rsc{J}
rags{j)=rsc(T)(1 +(0.5-cl)*dn*rsc(T))
DO 4 k=1,KK
dep(j k) =dsc(Ty*(1 + d(k)*rsci]])
repdj k) = rsc{T)/(1 + d{k)*rsc{]))
dshi(j k) =dsp{}.k}
rshij k) = rsp{j. k)
dsq(y, k) =dsc(1)*(1 +dqk)*rsc(T})
rsq(j, k) =rse(T)i{1 +dglk)*rsed]})
4 CONTINUE
c
¢ sfter tuming point 4
[ =
IF(TP4 .GT. II} goto 1111
CHE=CHEL{4)
c DSC=DSCL{4)
C REC=R3CL{4}
TP5=TP(5)
IF(TPS .GT. 1I) TP5=11+1
DO 5 J=TF4,TP5-1
dsqs(j) =dsc(T)*(1 +{0.5-cl)*dn*rsc(]))
reqadj)=rsc(J)/(1 +(0.5-cly*dn*rsc(J))
DO 5 k=1,EK
depj, k) = dsc(Ty*{1 + dik)*rsc(T))
rep() k)= rse(NA1 +dik)*rsc(T))
dsh(j, k)= dsp{j,k)
rehi(j, k)= rsplj, k)
dsqj k) =dsc(T)*(1 + dq(k)*rsc(l))
el K =rselI)/(1+dq(k)*rec(l))
5 CONTINUE
(]
¢ after tuming point 3

€
IF(TPS .GT. 11} goto 1111
CHE=CHEL{S)
c DSC=DSCL(5)
C RSC=RECL(5)
TP6=TP(6)
IF(TPG .GT. JI) TPG=J]+1
DO 6 J=TPS5,TP6-1
dsqs(j) =dsc{T)*(1 +(0.5-I)*dn*rsc(]))
raqs(i) = rsc{J)/( 1 +(0.5-cl)*dn*rsc{]})
DO 6 k=1,KK
disp(j, k) =dsc(Ty*(1 +d(k)*rsc(J))
rspdj. )= rsc{1)/(1 +d(k)*rse(1)}
ity
i) daellyo1-+ a0
rsq) k)= ree(T)/(1 +dq(k)*rsc{l))
6 CONTINUE

c
¢ after luming point &
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IF(TP6 .GT. II) goto 1111
CHE=CHELI6)
c DSCw=DSCLIG)
c RSC=RSCL{E)
TFI=TP(T)
IF(TPT .GT. I} TPT=J1+1
DO 7 J=TP&,TPT-1
duqu(j) = dec(S)*(1 +(0.5-cly*dn*rec(]))
rngalj) = rec(J)/( 1 + (0. 5-<ly*dn*rsc(]))
dap(j, )= dec{TY*(1 + d(k)*rac{l}}
ropdj. k) = rec(J)/( 1 + dik)*rec(]))
dih(j, k)= depj k)
rah(j, k) =rsp(j, k)
daqg(j, k)= dec(T)*(1 +dg(k)*rec(I})
s, k) = rec{F)i( 1 +dell}*rac{l})
7 CONTINUE

¢ after tuming point 7

¢
IF(TP? .GT. }I) GOTO 1111
CHE=CHEL({T)
cC DSC=DSCLIT)
C REC=RSCL{T)
TPE=TP(E)
IFI(TPR .GT. I} TPE=]i+1
DO & J=TP7,TPE-1
dege(j)=dsc{Jy*(1 +(0.5-cl)*dn*rac(l))
(= rec(IM(1 + (0. 5<ch)*dn*rec(]))
Do 8 k=1,KK
daspdj k) = dsc(T)*(1 + dik ) *rec(J})
rep(), k)= rsc{T)/(1 +d(k)*rc(I})
dshj k)= dap(] k)
reh(j, k) =rap(j k)
duq(j, k) =dse(T)*(1 +dg(k)*rsc(J})
rwgj, k) = rsc{J /(1 +dqik)*rec(J})
§ CONTINUE
&

¢ after tuming point

IF{TPE .GT. II) GOTO 1111
CHE =CHEL{#)
c DSC=DSCL(E)
c RSC=RSCL(E)
TP9=TP(%)}
IF(TP® .OT. 1) TPO=1J+1
Dﬂ‘ 9 ’-TH!TH'I
dacga(j) = dac({Ty*{1 +(0.5-cly*dn*rec{T})
ruqa()) = rectI)( 1 + (0.5-cl)*dn*re(J))
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DO % k=1,KK
dspd(j, k) =dsc{Jy*(1 + d(k)*rsc(J))
repd), k) = rse{T(1 + dk)*rsc())
dsh(j, k) = dspdj, k)
rshih, k) = rsp(j k)
dsq(j, k) =dsc(F)*(1 + dq(k)*rsc(})
g k) = rsc(F)/(1 +dqik)®rsc(T))
9 CONTINUE
[
¢ after turning point 9
C
IF(TP? .GT. }I) GOTD 1111
CHE=CHEL(%)
c DSC=DSCLIY)
C RSC=RSCL(9)
DO 10 J=TF2,1]
degs(j)=dsc(I)*(1 +{0.5-<ly*dn*rsc{]})
raqge(j) =rsc{I)/(1 +(0.5-¢l) *dn*rac{I)}
DO 10 k=1,KK
dsp(j, k)= dsc(J)*(1 +d{k)*rsc(l))
replj, k) =rsc(T)i(1 +d(k) *rsc(T))
dsh(j, k)= dsp().k)
rshij k) =rspdj. k)
dsqj, k)= dsc(J)*(1 +dq(k)*rsc(1})
rsq(j k) =rsc(1)/(1 +dqlk)*rscl]))
10 CONTINUE
1111 RETURN
END

C.1-3 GRAPHICAL PRESENTATION PROGRAM

This program has to be included for the necessity of graphical output result. Although
the simulations and calculations have been done in s and n coordinate system, cartesian
coordinate system has to be used to plot the graph on the printer or plotter. Therefore
conversion of the numerical output to graphical output the following programs are developed

and listed below.

C SUBROUTINE FOR THE CALCULATION OF X-Y AND 5-N CO-ORDINATES
C INITIAL DATA MEANDER WAVE LENGTH AND A SINE CURVE

c SUBROUTINE COORD
PROGRAM COORD
PARAMETER(N=112,M=5,LL=35)

commaon /f/CHE, SLOPE,RSCO0,DSCO,RN, DN JJ KK, ERR, L, TR(LL), CHEL{LL),

& Q(N, M), P(N,M),QC(N},RSC(N), DSC(N)

common /f2/DSP(N M), HHH'HLDSH{”'MLRSH{H'M}'DW-M}.REQ[H.HL
& DNPCN, M), RNP(N, M), DNHCN, M), RNHON, M), DNQ(N, M), RNQ(N M)
& LGN, M), V(N, M), RSTP(N, M), RSTH(N, M), RSTQ(N, M)
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common /4C(N), Y{N), XN{N), YN(N}, ALP{IN), ALPN(N),DB(N),A.,
& CSP(N), CNP(N), CEPN(N), CNPN(N), RSCN(N), DSCN(N)
REAL CL.RN,DN,CHE RSC,DSC,CHE1,R5C],DSC1,CHEZ, RSC2,D5C2,CHE] R3C3,
& DSC3,CHE4,RSC4,DSC4,CHES, RSCS,DSCS,CHES RSCS, DSCS,CHET RSCT,
& DSCT,CHES,RSCR,DSCH,CHES, RSC9,DSCO, DSX. DSY, D25X, D2SY, REACH,
& PLS51
INTEGER J,K.JJ. KK, TP1,TP2, TP3,TP4,TP5, TP6, TPT, TPS, TP, TP.L
DIMENSION DSQS(N),RSQS(NY, DQIM), D{M), UB(N), (N}, RSCN 1{N), RSCN2(N)
& ;DSCN1(N),DECNZ(N), r0(n),r1(n),r2(n)
C
C NOTE HERE RSCN1{J)=X-Y COORDINATE ;:RSCN2(J)=5-N COORDINATE
OPEN(3,FILE="COORD.IN" STATUS="0LD")
OPEN(4,FILE="DB.DAT" STATUS="0LD")
OPEN(,FILE="XY.DAT' ,STATUS="NEW")
OPER(I0,FILE="XNYN.DAT ", STATUS="NEW"}
OPEN{1LFILE="CURV.OUT" ,5TATUS="NEW")
OPEN(12,FILE="RSC.DAT" .STATUS="NEW")
OPEN{13,FILE="R0.DAT"' STATUS="NEW")
OPEN(14, FILE="R1.DAT" STATUS="NEW")
OPEN{(15,FILE="R2,DAT" STATUS="NEW")
CALL IREC
READ(3,*) DSCO,RSCO,RN,DN.JL KK, A REACH
DO 100 J=1,11
READ(4,*) 51,DB(J)
100 CONTINUE
¢ CALL IREC
¢ READ(3,*) (X(F),J=1,11)
C X-¥ CO-ORDINATES FOR THE INITIAL CENTER LINE
C STARTING FROM (DELTA 8 ) AND REACH LENGTH ; ASSUME Y =5IN(X)
DSC0=REACH/(11-1)
DO1J=10]
IF(J .EQ. 1) THEN
X(}=0.0
DX =
S(N=SQRT(DX**2 + SIN(DX}**2)
REACH =S(Jy*(1I-1)
ELSE
a(j)=(j-1)*dx
ENDIF
Y= A*SINC)
ALP(I) = ATAN(A*COS(X{)
S(Jye=X(J)/SINCALP{T))

. I CONTINUE

€ X-¥ CO-ORDINATES FOR THE NEW CENTER LINE

Pl=3.141592654
DO 2 Ju1,J)

. RSC(T)=RSCO*COS(2*PI*S{J)VREACH)
RSC(J) = RSCO*Sin(2*PI*S{J)/REACH)
XN =X(1)-DB)*SIN(ALP{)
YN =Y (I} +DBUJ)*COS(ALF)}
ALPN(J)= ATAN{(Y(T+ 1-YI(X(J + 13-X(00
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ifirsc()) cne. O, Mhen
0= 1/rscj)
endif

2 CONTINUE
C
C DECN arc length of the new center line & RSCN new curvature
C USING X-Y COORDINATE
DO 10 J=1,J1-1
DICT)= SQRT(NT + 1)-X I **2 + (Y (] + 1)-Y(I)**2)
DSCN1(I)=SQRT((XN{ + 1)-XN(T)1**2 + (YN(T + 1)-YN(I)y**2)
10 CONTINUE
DO 20 J=1,11-2
DXS=((XN{ + 1)-XNNYDSCN 1+ (YN +2)-YN(I + 1)VDSCNI{J + )2
DYS=((YN{J + D-YN(VDSCN 1{T+ (XN + Z-XN({J + DVDSCNI(T + 1)p2
DIXS e (XN + 2)-XN{I + DVDSCN 1T+ 1)-(XN + 1)-XN(VDSCN 1)
& 0.5%DSCN1TN+DSCNI + 1))
D2YS={(YN{J+2)-YN{J + DVDSCNI{J + 1 )-0YN( + 13- YN(VDSCN L)
& QESDSCH I+ DSCHI + 1)
RECHI(I +1)={DX5*D2Y 5-D2X5*DY SN SQRT(DXS**2 + DY S**2))**3
rl{j)= Lirscnl(j+1)
20 CONTINUE
C
C CALCULATION FOR NEW CENTER LINE POSITION
C THIS IS 5-N COORDINATE
CSP(1)=0.0
CNP{1)=0.0
DO 11 J=2,01
CNP(I)=0.0
CEP{N=CSP{J-1)+D3C{I-1}
11 CONTINUE
C AFTER BANK EROSION
C BE ALWAYS CAREFUL FOR STRAIGHT CHANNEL
CSPN(1)=0.0
DO 22 =101
IF{J .LT, II) THEN
DB(N=(DB{N+DB{J + 1))/2
ELSE
DB(N= DB(-1)
ENDIF
IF(RSC()) .GT. 0 .AND. DB(J) .GT. 0) THEN
RECHAT=1H1/RSCN+ DRI
ELSEIF(RSC({I) .LT. 0 .AND. DB(J) .LT. 0) THEN
RSCN2{J)=1/{1/RSC{J) + DB(N)
ELSE
RSCN2{T}= L{L/RSC{J)-DB{I))
ENDIF
r2{j)= 1/rscnl{j)
DSCN2{N)=DSC(I*REC(IVRECNZ(I)
CSPN(I+ 1)= CSPN(J)+ DSCN2(N
CNPN(J)=CNP(J) + DB(J)
22 CONTINUE
C PRINT X-Y CO-ORDINATES
DO 3T=1.0]
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WRITE(9, )X (1), Y(J)
WRITE(10,*)XN(I, YN
3 CONTINUE
Cl
WRITE(11,*)y'DsSc(n"
WRITE(11,60(DSC()),J=1,1J-1)
60 FORMAT(/.(TE11.4),/,(7TE11.4),/ (TE11.4),/,(TE11.4),/ (TE11.4)
& (TE11.4),/,(TE11.4),/ (TE11.4),/ (TE11.4),/ ({TE11.4),/,
& J(TE11.4),/(TE11.4),/ (TE11.4),/,(TE11.4),/,(2E11.4),)

Cc2
WRITE(11,*) DSCN1(J}*
WRITE(11,70)(DSCNI{NJ=111-1)
0 FORMAT(/(TE11.4),/ (TE11.4),/ (TE11.4),/ (TE11.4),/ .(TE1].4)
& (TE11.4},/(TE11.4),/,(TE11.4)./,(TE11.4),/(TE1L.4),/,
& (TE11.4),/(TE11.4),/.(TE11.4),/.(TE11.4),/.(2E11.4)./)
[ e
WRITE(11,%)'DSCN2(J)"
WRITE(11,72)DSCN2(1).J= | JJ-1})
72 FORMAT(/ .(TE11.4),/ (TE11.4),/ (TE11.4),/,(TE11.4),/,(TE1 1.4)
& (TE11.4),/,(TE11.4),/,(TE11.4),/,(TE11.4),/,(TE11.4),/,
& (TE11.4),/(TE11.4),/.(TE11.4),/,(TE11.4)./,(2E11.4)./)
&3
WRITE(11,*)'RSC{I)’
WRITE(11,75RSC().J=1,11-1}
75 FORMAT{/,(7TE11.4),/,(7E11.4),/ (TE11.4),/,(TE11.4),/ (TE1 1.4}
& ,(TE11.4)./(TE11.4),/,(TE11.4),/.(TE11.4),/.(TE11.4)./,
& (TE11.4),/,(TE11.4),/ (TE11.4)./(TE11.4),/,(2E11.4),7)
C4
WRITE(11,*)RSCN1{J)’
WRITE(11,B0)RSCN 1(1),J=1,11-1)
80 FORMATY(/.(TE11.4),/,(TE11.4),/,(TE11.4),/,(TE11.4),/,(TE11.4)
& (TE11.4),/.(TE11.4)./,(TE11.4),/,(TE11.4),/,(TEL1.4)./,
& (TE11.4),/(TE11.4),/,(7TE11.4),/,(TE11.4),/,(2E11.4),/)
(1n]
WRITE(11,*)'RSCN2(J)’
WRITE(11,90)RSCN2(T).J=1,11-1)
% FORMAT(/,(TE11.4),/,(TE11.4),/,(TE11.4),/,(7E11.4),/,(7E11.4)
& (TE1L.4),/,(TE1L4)./(TE1L4),/(TE1L4)/(TELL.4)./,
o & L(TE11.4),/,(TE11.4)./ (TE11.4)/,(TE11.4),/,(ZE1 1.4)./)

DO 111 Je=1,30
WRITE(12,*)S(J),RSC())
111 CONTINUE
DO 112 J=1.1)
WRITE(13,*)5(J),RO(J)
112 CONTINUE
DO113 =11
WRITE(L4,*)S(J), R1{J)
I3 CONTINUE
DO 114 J=1.01
WRITE(15,*)5(1),R2()
114 CONTINUE
CLOSE(9)
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CLOSE(10)
CLOSE(11)
CLOSE(12)
CLOSE(13)
CLOSE(14)
CLOSE(15)
STOP
END

C CALCULATION FOR BANK DISPLACEMENT (DE(I)
PROGRAM BANK
PARAMETER(N =205)
REAL RATE, TTIME,S
INTEGER II
DIMENSION DB(N), UB(N)

OPEN(4,FILE="BANK.IN" STATUS="0LD"

OPEN(S,FILE="plt19.DAT' STATUS="0LD")

OPEN(S, FILE="BANK.QOUT" STATUS="HEW")

CaLL TREC

READ{4,*) RATE, TTIME.JJ

DO 10I=10]
READNS,*}s,UB(j)
DB()=UB{J*RATE*TTIME
WRITE(S,*)s,DB(j}

10 CONTINUE

CLOSE(4)

CLOSE(S)

CLOSE(G)

STOP

END

SUBROUTINE IREC
CHARACTER*1 REC
DO 101 = 1,99
READ (4,20) REC
IF (REC .NE. *C*) GOTO 30
10 CONTINUE
20 FORMAT{A1)
30 RETURN
END

C THE CALCULATION OF X-Y AND 5-N CO-ORDINATES
C AFTER THE CENTER LINE MOVEMENT
C THIS 1S FOR A SERIE OF CIRCULAR BENDS
PROGRAM PLAN
PARAMETER(N=112,M=5LL=9)
common /fICHE, SLOPE,RSC0,D5C0,RN, DN, JILKK ERR, L, TR(LL),CHEL(LL),
& RSCL(LL),DSCL(LL), HINIT(M}),DPW (M), H{N,M),F(N,M),
& QN M), P{N M), QC(N),REC(N), DSC{N)
common /f2/DSP(N, M), RSP(N, M), DSH(N,M).RSH(N, M), DSQ(N M) RSQ({N, M),
& DNP(N, M), RNP(N, M), DNH(N, M), RNH(N, M), DNQ(N, M), RNQ(N, M),
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& U{H FMJIF{H- M:.Rﬂﬁ”-“?:mm rM}r RET{HHrm
common MFXNY, Y (IN), XN(N), YN{N), ALPIN), ALPN(N), DB(N), A,
& CEP(N), CNP(N),CSPN(N),CNPN(N),RSCN(N).DSCN(N)

REAL CL.RN,DN,CHE,RSC,DSC,CHE1,RSC1,DSC1,CHE2, RSC2,D5C2,CHE3 RSC3,
&  D3C3,CHE4,RSC4,DSC4,CHES, RSCS,DSCS,CHEGS, RSC6,DSCS, CHET, RSCT,
: IP}IE;Z'IZ-'.EHEE.RSCE,DSEE,CHEﬂ.RECﬂ,DSC?.DS?E.DEY.DEﬂrDEET,H.E-‘hCH.
INTEGER I.K. 1), KK, TP1,TP2,TP3,TP4,TP5, TP5, TP7,TP8, TP9, TP, L
DIMENSION DSQS(N).RSQS(N), DO(M), D{M), UB{N),5(N), RSCN1(N), RSCNI(N)
& +DSCNI(N),DSCN2(N},r0{n),rl{n).r2(n),teta(n),ta(n).
; & dxin},dy(n)
C NOTE HERE RSCNI1(J)=X-Y COORDINATE ;RSCN2(I)=5-N COORDINATE
OPEN(),FILE="DATALIN", STATUS="0LD")
OPEN(4,FILE="DATA2.IN" STATUS="0LD")
OPEN(S,FILE="DBE.DAT" ,STATUS="0LD")
OPEN(?,FILE="XY.DAT ' . STATUS="NEW")
OPEN(10,FILE="XNYMN.DAT',STATUS="NEW")

CALL IREC
READ(3,%) dscO, RSCOD,dscl, rsel dsc2, rse2 RN, DN, JJKK
DO 100 J=1,1J
READ{4,*) 5,DB(I)
100 CONTINUE
do 101 j=1,jj
dsc(j) = dscO
rselj)=rscl
101 continue
CX-Y CO-ORDINATES FOR THE INITIAL CENTER LINE (Y =Ff(X})
CIT ALSO CAN BE ANY GIVEN POINTS (FREFERABLY IN TABULATED FORM)
Pl=3.141502654
8(1)=0.
X{1)=0.
Y(1)=0.
TA{1)=0.
ALP(1)=PL/2-DSC{1y*RSC(1)/2
DX(1)=DSC(1)*COS(ALP(1))
DY(1)=DSC{1)*SIN{ALP(1))
DO J=207
TETA(T)=DSC(N*RSC(T)
TA(N=TA(I-1)+ TETA(J-1)
ALP()=PL/2-TETA(I)/2-TA{T)2
DX(N)=DSC(N)*COS(ALP(j))
DY () =DSC(N*SIN(ALP{))
S(N)=8(J-1)+DSC{)-1)
XiD=X(J-1)+DX{-1)
Y{N=Y{J-1)+DY({I-1)
. | CONTINUE
C X-Y CO-ORDINATES FOR THE NEW CENTER LINE
DO 2 J=1,J]
XN =X{N-DB(N*SIN(ALP())
YN({I)=Y(J)+ DB({Jy*COS{ALPFT))
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ALPN=ATAN(CY (] + 1)-Y DX + 1)-X(00)
ifirsc(j) .ne. 0.)then
c () = 1 frmc(j)
endif
2 CONTINUE
C
C DSCHN arc length of the new center line & R5CN new curvature
C USING X-Y COORDINATE
DO 10 J=1,31-1
DECTN=S0RT((X(T + 1)-X(D*2 + (Y () + L)-Y{I+*2)
C DSC{N)=DSCO
DECNIT)=SQRT{XN(I + 1)-XMN{I)**2 + (YN + 1)-YN{)**2)
10 CONTINUE
Do 20 I=1.11-2
DXS={((XN{J + 1)-XN{NNDSCN1(T) + (YR +2)-YN( + L)VDSCN1(J + 1))2
DY S={YNT+ D)-YNDOYDSCN 1T + (XN + 2)-XN(J+ 1))VDSCN I + 1))2
D2XS= ((XN(J +2)-XN({J + DVDSCN I+ 1)-(XN{J+ 1 )-XN)/DSCN L)
& 0.5%DSCN1(IN+DSCNI{I+1})
D2YS={(YN{ +2)-YN{J + INDSCNI(T+ 1)-0YN( + 1-YN{IN/DSCN L)Y
& 0.5%DSCN1(J) + DSCNLJ + 1))
RSCN1{J +1)=(DXS*D2YS-DZXS*DYS)/(SQRT(DXS5**2 + DY S**2))**3
c rl{j)=lirscnl(j+1)
20 CONTINUE
C
C CALCULATION FOR NEW CENTER LINE POSITION
C THIS IS 5-N COORDINATE
CER{1)=0.0
CNP{1)=0.0
DO 11 J=211
CHNP(T=0.0
CSP()=C3P{J-1}+DSC{J-1)
11 CONTINUE
C AFTER BANK EROSION
C BE ALWAYS CAREFUL FOR STRAIGHT CHANNEL
CSPN(1)=0.0
DO 22 1=11]
IF{J .LT. 1J) THEN
DB(J)=(DB(1)+ DB+ 1))/2
ELSE
DB(T)= DB{J-1)
ENDIF
IF(RSC(I) .GT. 0 .AND. DB({J} JGT. 0) THEN
RSCN2(J)=1/{L/RSC(T)+ DE(1))
ELSEIF(RSC(J) .LT. 0 .AND. DB(J) .LT. 0) THEN
RSCN2(Fy= 1/(1/RSC(1) + DB())
ELSE
RSCN2(T)y= 1/(1/RSC(T)-DBI))
EMDIF
C 12(j) = 1/rscn{j)
DSCN2(J)= DSC{)*RSCRSCNI()
CSPN(]+1)=CSPN{I}+ DSCN2(T)
CNPN(I)=CNP{J) + DB(J)
22 CONTINUE
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C PRINT X-Y CO-ORDINATES
DO =11
WRITE(,*)X {0, Y
WRITE(1O, *)XN{J)LYN(T)
3 CONTINUE
|
WRITE(11,*)'DSC(1)Y
WRITE(11.604DSC(I),J = 1,11-1)
60 FORMAT(/,(TE11.4),/,(TE11.4),/ (TE11.4),/ (TE11.4),/,(TE11.4)
& (TE11.4),/.(TE11.4),/,(TE11.4),/(TE11.4),/ (TE11.4),/,
& (TE11.4),/,(TE11.4},/,(TE11.4),/,(TE11.4),/,(2E11.4),1)
c2
WRITE(11,*)'DSCNI{T)
WRITE(11,TOWDSCN1(T).]=1,11-1}
70 FORMAT(/.(TE11.4},/ (TE11.4),/,(TE11.4),/ (TE11.4),/ (TE11.4)
& (TELL.4),/(TE11.4),/ (TE11.4),/ (TE11.4),/.(TE11.4),/,
& (TE11.4),/.(TE11.4),/ (TE11.4),/ (TE11.4),/.(2E11.4),))

L 8]
WRITE(11,*)'DSCN2(J)*
WRITE(11, T2DSCN2(N.T=1,0J-1)
72 FORMAT(/(TE11.4),/ (TE11.4),/,(TE11.4},/ (TE11.4),/ (TE11.4)
& (TE11.4),/(TE11.4),/.(TE11.4),/(TE11.4),/ (TE11.4),/,
& (TE11.4)./(TE11.4),/ (TE11.4}./.(TE1] 4),/,(2E11.4).)
o |
WRITE(11,*)"RSC{))’
WRITE(11, 75}RSC(T),J=1,11-1)
75 FORMAT(/(TEL]1.4),/ (TE1 1.4}/ (TE11.4)./,(TE1 1.4),/ {TE1 1.4}
& (TE11.4),/(TE11.4),/,(TE11.4),/,(TE1L.4},/,(TE11.4),/,
& (TEI1.4),/,(TE11.4),/,(TE11.4),/ (TE11.4),/,(2E11.4),)
4
WRITE(11,*)"RSCNI{I)
“ITE{] |-3ﬂ]m5m|{3]15"1-”'1]
80 FORMATY/,(TE11.4),/,(7TE11.4),/,(TE11.4),/,(TE11.4},/ {TE1 1.4}
& (TE11.4)./,(TE11.4),/.(TE11.4),/(TE1L.4),/ (TE11.4),/,
& (TE11.4),/,(7E11.4),/,(TE11.4),1,(TE11.4),/,(2E11.4),/)
Cs
WRITE(11,*"RSCN(T)"
WRITE(11,90)(RSCN2(J).J =1JI-1)
%0 FORMAT(/,(TE11.4),/,(7E11.4),/(TE11.4),/ (TE11.4),/ (TE11.4)
& (TE11.4),/,(TE11.4),/ (TE11.4),/,(TE11.4},/ (TE11.4)./,
& (TE11.4),/,(TE11.4),/,(TE11.4),/ (TE11.4),/,(2E11.4),)
6
Lo 1l I=1,1)
WRITE(12,*)5()),RSC(J)
111 CONTINUE
DO 112 I=1.1]
WRITE(13,*)5(J), RO(J)
112 CONTINUE
DO 113 1=1.11
WRITE(14, %1503, R1{J)
113 CONTINUE
DO 114 J=1.1]
WRITE(15,*)5(J), R2{J}
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114 CONTINUE
CLOSE(%)
CLOSE(10)
CLOSE(11)
CLOSE(12)
CLOSE(13)
CLOSE(14)
CLOSE(15)
STOP
EWD
C
C SUBROUTINE FOR SKIPS COMMENT CARDS IN INFUT DATA
C
SUBROUTIME IREC
CHARACTER*1 REC
DO 0T = 1,59
READ (3,200 REC
IF (REC .NE, 'C") GOTO 30
10 CONTINUE
20 FORMAT{AL)
30 RETURN
END
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C.2  Variety of bank erosion models

The most important programs for the calculation of bank erosion rates are presented
in this section. There are nine different bank erosion rate programs available from the present
study. The program codes which are not listed here are simple implemetation of the empirical
bank erosion rate formulas mentioned earlier in Chapter 5. The brief description of the
available bank erosion rate modules result from the present study are as following.

Part 1
These three modules are written in the fortran 77 code, will be listed hereafier,

. BANKI.FOR : Ariathurai and Arulanandan Model, 1978, Based on the flume studies.
Cohesive material with 30% illite.

2. BANK2.FOR ; Based on hydrodynamic forces. Derivation has been presented in
section C.1.

3. BANK3.FOR ; Hasegawa Model, 1987, Based on hydrodynamic forces. Rederivation
has been made by author which is not mentioned in the oniginal paper.

Part 2

These two modules are also written in the fortran 77 code, but attached with
simulation model, see sections C.2 and C.3.

9. BANK9.FOR : Ikeda et. al Model, 1981
This model 15 directly attached to the subrouting of the bank line
displacement.

10. BANK10.FOR ; Parker Model, 1983
This model is also directly attached to the subroutine of the bank line

displacement.
Part 3

These modules are simple mathematical relations therefore details are not listed here.
The corresponding names of the empirical formulas for these modules, bank4 to bank8 can
be seen in Chapter 5.

BANK4.FOR
BANKS.FOR
BANK6.FOR
BANK7.FOR
BANKS.FOR

LA b Lad B s
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C.2-1 Bank erosion rate calculation for cohesive material

PROGEAM BAMEIL
C Bank srozion rile calculation @ for *Cohesive matenal”
c
PARAMETER (G=981, TOUC=0.047, DEL = 1.65, COE= 001565, P5S= 2550, N =530}
INTEGER 111
DIMENSION Q(N). H{N}, LN}, S0{N), B(N). CEE(N)
REAL LENGTH,SLOPE,DIA, X5, DT, HO,BO,CHE, TOUE, TOUS,D

OPEN (3,FILE = "BANKI1.IN',STATUS ="0LD")

OPEN (6,FILE = "BANK1,OUT" STATUS="NEW")

CALL IREC

READ (3,% HO,SLOPE,CHE,B0.DIA LENGTH,DS, DT

WRITE (6,5)

WRITE (6,56) LENGTH, B0, SLOPE,DIA,CHE, DS, DT
5 FORMAT (//,20X,"BANK EROSION RATE CALCULATION (BANKL.OUT)',
& 7,20, 42("-")
& FORMAT (/,20X,"INPUT DATA [NITIAL VALUES",

{,20%," i

/,20X,'LENGTH OF THE RIVER',F10.2," M",
{1,20X,"WIDTH OF THE RIVER ', F10.2," M",
foR0X BED SLOPE ', Fli.4,
{.20X, "GRAIN SIZE DIAMETER',E10.4," M",
/,20%," CHEZY COEFF. "F10.2," M*+0.5/8",
/20X, DELTA § °FI0.2," M',
{206, DELTA T  °Fi10.2," 8./,20X.42('-")
/200, 29(¢"-"),
/.20X,"CEE = BANK EROSION RATE (M/S)"./,20X,29("-"))

LR R

C
C CALCULATE 1] = NUMBER OF NODES

D = LENGTH/DS
=D+l
C INITIALIZATION
DO 1W0M= 11
H(I1)} = HO
B{ll} = BO
U{T1) = CHE * SQRT(SLOFE * H{l1)}
Q(I1) = U(IL) * H1) * B(l1)
10 CONTINUE
C CALCULATION
DO 30 I=1.1]
TOUS = U} * Ufl) / (CHE*CHE*DEL*DIA)
IF {TOUS .LE. TOUC) THEN
S0(1y = 0.0

ELSE
SO0(J) = 2.7* SQRT(DEL*G*DIA**3)*(TOUS-TOUC)**1.5

ENDIF
TOUB = 0.75*TOUS

[F(TOUB .LE. TOUC) THEN
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CEE(l) = 0.0
ELSE

CEE()) = COE*(TOUR/TOUC-1.)/(PS*100,%60.)

ENDIF
A0 continue
C TO MAKE THE OUTPUT FILE
CALL WRITE(B,.H,50,CEE,II)
CLOSE(3)
CLOSE(S)
end
C
C SUBROUTINE FOR THE OUTPUT RESULTS
SUBROUTINE WRITE(B,H,50,CEE,JN
REAL B(50), H(50),50(50),CEE(50)
INTEGER 1,17
WRITE(6,21)
WRITE(6,15) (B(J),J=1,8)
WRITE(6,16) (H({)),]=1,8)
WRITE(G,17) (S0{1).T=1,8)
WRITE(G, 18 CEE(N.J=1,8)
WRITE(6,20)

WRITE(S,22)
WRITE(5,15) (B(J),J =9,16)
WRITE(6, 16) (H(T),J=9,18)
WRITE(6,17) (S0{I},]=9,16)
WRITE(6, 18)(CEE(J),] =9, 16)
WRITE(S,20)

WRITE(5,23)

WRITE(S,15) (B(J)J=17.11)
WRITE(S,16) (H(T),J=1711)
WRITE(S,17) (S{),]=17.11)
WRITE(S, 1 8){(CEE(),]=17,1J)
WRITE(S,20)

15 FORMAT (/,4X,"W" BES.3)
16 FORMAT (4X,"H",8E9.3)
17 FORMAT (3X,'50",8E9.3)
18 FORMAT (2X,.'CEE' BES.3)
20 FORMAT (12X, 76("-"1)
21 FORMAT (2X.".....J=1to J=§ ...... ")
22 FORMAT (2X,".....J=910 J=16...... ")
23 FORMAT (2X,".....J=1T 16 J=24 ...... ")
RETURMN
END
C
€ SUBROUTINE SKIP
SUBROUTINE IREC
CHARACTER®*1 REC
oo 10 I=1,30
READ{3,20REC
IF (REC .NE. 'C") GOTO 30
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10 CONTINUE

20 FORMAT{AL)

0 RETURN
END

C.2-2 Bank erosion rate calculation using force balance theory

PROGRAM BANKZ
PARAMETER (G=9.81, TOUC=0.047,DEL =1.65,DMU=0.8 ALUB=0.4,N = 30)
INTEGER J,1J
DIMENSION Q(N),H{N),U(N),S0({N),B(N), TOUS(N),CEE(N),
& BNPL(M), SEPDN), BS(M), AA(N), DIF(M), BN, X(N)
REAL LENGTH,SLOPE,DIA, DS, DT, HO,BO,CHE, YY,Y XX, W.TETA,.D
C Initialization
OPEN (3, FILE = 'BANK2.IN' STATUS ='0OLD")
OPEN (6,FILE = "BANKI.OUT  STATUS = "MNEW")
CALL IREC
READ (3,*) H0O,SLOPE,CHE,BO,DIA,LENGTH, DS, DT.TETA
WRITE (6,5)
W = 2.*B0
WRITE (6,6) LENGTH, W, SLOPE,DIA,CHE,DS,DT
5 FORMAT (//,20X,'BANK EROSION RATE CALCULATION (BANKZ.OUT)',
£ 20X, 42("-"))
6 FORMAT (/,20X, " INPUT DATA INITIAL VALUES',
Jlm:. lr
J,20X,'LENGTH OF THE RIVER' F10.2," M',
L20X,"WIDTH OF THE RIVER " F10.2," M',
1 20X," BED SLOPE *El0.4,
§,20%,"GRAIN SIZE DIAMETER',E10.4," M',
/,20X,' CHEZY COEFF. ° F10.2," M*%).5/5°,
/20X, DELTA 5 " Fl0.2' M,
f20X," DELTA T LFL0Z B 200, 43(°-)
£,20X,29("-"),
/,20X,"CEE = BANK EROSION RATE (M/S)",/,20X,29("-"})

B

PR R

[
C CALCULATE Il = NUMBER OF MODES
D = LENGTH/DS
H=D+1
C INITIALIZATION
DO 10 I= 11
Hill) = HO
B(I1) = BO
U{Il) = CHE * SQRT(SLOPE * H{l1})
Q(11) = U(LL) * H(l1) * B{I1) * 2.
10 CONTINUE
1
C CALCULATION
DO J=101
TOUS() = Ul * U) / (CHE*CHE*DEL*DIA)
IF (TOUS() .LE. TOUC) THEN

50(1) = 0.0
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ELSE

SO = 2.7* SQRT({DEL*G*DIA**3)*TOUS{J)-TOUC)**1.5
ENDIF

SEBPO(T) = SON*HNABUI*DMUSTOUCITOUST))**0.5

C IF IT IS SEDIMENTATION, (+VE)

Y = {1.- ALUB*B(I)*H{I*TETA*(1. (1. A(DMU*B{TN)
XX = SEPO)*DT*DMUSTOUSITOUCH**0.5/Y
BS(N = 1.0001

100 X()) = BS(J)+BS()**3/3 + BS(J)**5/5 + BS()**7/7

c

c
c

c

YY = ABS(1-BS(Jy*BS(T)
DIF(T) = XX-(2.*ABS(1-BS(N)y**3*X(J¥YY)
BS(J) = BS(I)+ DIF(J)
AA(N = ABS(DIF(N)
IF(AA(N JGT. 0.00001) GOTO 100
BNPL{J) = BS()*B(J}
CEE(T) = (BNPI(T} - B()Y DT
B2(J) = 2. * B()
30 continue
TO MAKE THE OUTPUT FILE
CALL WRITE(B2 H,50,5EP0,CEE 1T}
CLOSE(3)
CLOSE(S)
end

SUBROUTINE FOR THE OUTPUT RESULTS
SUBROUTINE WRITE(B2,H,50,58P0,CEE.IJ)
REAL B2($0),H(30),50({30),5BPO{30),CEE(50)
INTEGER J,1J

WRITE(6,21)

WRITE(6,15) (B2(J),)=1,8)
WRITE(S,16) (H(J),J=1,8)
WRITE(S,17) (30(J).J = 1,8)
WRITE(S, |} (SBPOI), ) = 1,8)
WRITE(S,19)(CEE().J = 1.8)
WRITE(S,20)

WRITE(6,22)

WRITE(6,15) (B2(1),J=9,15)
WRITE(S,16) (H(J),J=9,16)
WRITE(6,17) (S0(1)J=9,16)
WRITE(S, 18)(SBPO(T), ] =9,16)
WRITE(6, 19%CEE(T),J=9,16)
WRITE(6,20)

WRITE(6,23)

WRITE(6,15) (B2(N.J=17.11)
WRITE(S, 16) (H(T),J=17,1])
WRITE(6,17) (S0{I),J=17.11)
WRITE(S, 18SBPO(), T =17,1J)
WRITE(S, 19 CEE(N) J= 17,17}
WRITE(6,20)

15 FORMAT (/,4X,"W" ,BE9.3)
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16 FORMAT (4X,'H".8E9.3)
17 FORMAT (3X,"S0",8E9.3)
18 FORMAT (1X,'SBP0',8E9.3)
19 FORMAT (2X,'CEE",8E%.3)
20 FORMAT (1X,76("-"))
21 FORMAT (2X,".... =110 =8 ...... ")
22 FORMAT (2X,"....J=% 10 J=16...... gy
23 FORMAT (2X.".... J=1T1w0 J=24.....")
RETURN
END
c
C SUBROUTINE SKIP
SUBROUTINE IREC
CHARACTER*1 REC
DO 10 [=1,30
READ{3,200REC
IF (REC .NE. 'C") GOTO 30
10 CONTINUE
20 FORMAT(AL)
30 RETURN
END
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C.2-3 Bank erosion rate calculation using near bank excess-velocity theory

PROGRAM BANK3

PARAMETER (G =9.8] touc=0.047 del= 1 .65, smu=1.0,dmu=0.8, ALUB=0.4,

& N = 50)
INTEGER. 1,1)

DIMENSION H(N}, U(N).B(N),CEE(N), BNP1{N), BB(N),CC(N), UBK{N), DB(N)
REAL UD,HO,LENGTH,SLOPE,DIA RS, TETA, DS, DT, B0,CHE, 50, TOUS, AA AP,

&  PSLT,PHLX

C Initinlization

OPEN (3,FILE = "BANK3I.IN1",STATUS ="0LD")
CALL IREC
READ (3,%) (LiI),1=1,12)
CALL IREC
READ (3.%) (U(1),1=13,24)
CALL IREC
READ (3,%) (H{l),I=1,12)
CALL TREC
READ (3,%) (H(I).1=13,24)

CLOSE(3)

OPEN (3,FILE = "BANK3.IN2".STATUS ="0OLD")

CALL IREC

READ (3,*) U0, HO,5LOPE,CHE, B0, DIA, LENGTH

CALL IREC
READ (3,*) BETA,RS, TETA,DS,DT

CLOSE(3)

OPEN (6,FILE = "BANE3. OUT' STATUS="NEW")

WRITE (6,5)

WRITE (6,6) LENGTH,BO,RS,SLOPE,CHE, DS, DT
5 FORMAT (//,20X,"BANK EROSION RATE CALCULATION",

& 120X, — )

C

6 FORMAT (/,20X." INPUT DATA INITIAL VALUES",

FREEFPRERPRERRERD

/,20X," b
/,20X,"LENGTH OF THE RIVER',F10.2,'M",
/,20%,"WIDTH OF THE RIVER ' F10.2,'M",
1,20, 'RADIUS OF CURVATURE',F10.2,"M",
/,20X, BED SLOPE '.E10.4,

[,20X," CHEZY COEFF, '.F10.2,"M**0.5/5",
/,20X,' DELTA § " FI0.2'M",

/20X, DELTA T “Fl0.2,'8,
1,20%,26("-"),

/,21X,'DB = BANK LINE DISPLACEMENT (M) OVER THE PERIOD DT*

J,22X,"H = WATER DEFTH (MY,

J.WK,'CEE = BANEK EROSION MTE ".M"E..IFJ-M.SI{‘-‘]}

C CALCULATE J] = NUMBER OF NODES
¥ = LEMGTH/DS
I =X+1

C

C START CALCULATION
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RIVER PLAN-FORM MOVEMENT IN AN ALLUVIAL PLAIN

C NEAR BANK EXCESS VELOCITY RATIO { HERE U{l1)=U{J KK) FROM THE
C NUMERICAL SIMULATION MODEL HYDHST.FOR)
c
DO 0= 10
B(ll) = BOv2,
UBMI) = LI1wU0=-1.0
10 CONTINUE
c
CALL PARA(TOUS,PHI, 50,T,PSI, U0, HO,BETA,CHE,DIA, RS)
[nd
ap = 50 /({1-alub)*h0)
&&= ap*h0*3/(phi*teta)
DO 25 i=1,jj
bib(i) = (ap=slope/{phi*teta) y* (ub0{i)+ 0. 5)
ce(i)=(ap*h0*(1 + (3*ubl(i)/phi)) *(T*Leta-psi))/{phi*teta)
2% continws
DO 30 J=2,11-1
BNPL(I ={AAYUBN] + 1 }-UBO(J-1))/(2*DS)-BBR{I
& +CC(T*DT+B(J)
30 continue
BNP1{IN)={AAYUBNIT)-UBNII-NDS-BRIIN+ CCUIN*DT + BN
BNP1(1) =(AA*UBO(2)-URNK1)/DS-BR(1)+ CC(1)*DT+B(1)
DO 40 [4=1,1)
DB(14) = BNP1(14)-B(14)
IF{DB(14) .LE. 0.) DB(l4) =0,
CEE(14) = DE(4)/DT
40 CONTINUE
WRITE(6,19)
WERITE(S, 15 (DB J=1,8)
WRITE(6,16) (H{J),J=1,8)
WRITE(6, 1 T CEE{},J=1,8)
WRITE(G,13)
WERITE(6,200)
WRITE(6,15) (DB J=2,16)
WRITE(6,16) (H(J),J=9,16)
WRITE(S, | 7HCEE(),]=9,16)
WRITE(G,18)
WRITE(6,21)
WRITE(6, 15) (DB{J), I = 17,11
WRITE(6,16) (H(I),J =171}
WRITE(6,17MCEE(N,]=17.1N
WRITE(6,18)

15 FORMAT (2X,'DB',8E9.3)
16 FORMAT (3X,"H",8E9.3)
17 FORMAT (1X,"CEE',8E9.3)
18 FORMAT (1X,76{"-"1)
19 FORMAT (4X,".....J=110 J=8 ... 9
20 FORMAT (4X,"....J=9 10 J=16 ......")
21 FORMAT (4X,".....J=17t0 1=24 ......"
CLOSE(S)
END
C
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AFPENDIX-C

¢ subroutine for pararheters
subroutine paratous, phi, 0,1, psi, ud, h0, beta, che, di, rs)
perameter (g=9,81,del= 1.65 touc=0,047,smu = 1.0,dmu=0.8)
REAL u0,tous,phi,s0, T, h0, psi

tous = ul*uli{cho*che*del*dia)
phi = (tous-touc)/tous
ifftous .le. touc) then
) = 0.0
else

80 = 2.7 * SQRT{del*g*dia**3. J*{tous-touc)**1.5
endif
T = SQRT{touc/(smu*dmu*tous))
psi = (-beta*h0/rs)
10 contimue
retum
end
C
C SUBROUTINE FOR SKIPS COMMENT CARDS [N INFUT DATA
C
SUBROUTINE IREC
CHARACTER®*] REC
DO 10T = 1,99
READ (3,20) REC
IF (REC .NE. 'C"} GOTO 30
10 CONTINUE
20 FORMAT{ATL)
30 RETURN
EMD
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AFTER WORD

It is this we learn after so many failures,
The building of casiles in sand, of queens in sROW,
That we cannor make any corner in life or in life’s beauty,
' Thar no river is a river which does not flow.

Louis MacNeice
Aurumn Journal, 1938
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